

(h) Special Function Key Label Field (Refer to Figure 40)

Channel : 50 AZ Ratio: 0			Aode :	Norm AZ
P Parity: E	E Update	:100	Symmetry :	0
6.75 Hz: 0	FF Fade Ro	rie : OFF 477 villanda muant	rep Mod :	OFF
PFE:	AZ = +1	· 我这是我们是我这么明白时间只有的智慧的自己的。	-L = +08.0	OO Deg
CMN:	EL = +1		BAZ= +06.0	
		T_R O L		
	Angle—— Level— -		th- -RT - 0	
	8b 30 00.00 8b 30 00.80	Norm I	-10	~ 0 ~ 0 - 0
	00.00 06 48		-10	. •
	85 80 00.00		L	
MP : OFF -		Clear	→ Left d	18: +06
2-	3456-	ADI-AD2-AD3-	AD4 Right d	is: -06
DATA: ON ON	ON ON ON	ON ON ON	ON Angle 4	-: 12.50
				•
				-
ipproach AZ	old distance Proportional Cov			Parity: E : Cir.Sig: O Spare : O

Special Function Key Label Field Figure 40

- 1 MLSTEST Displays the Test Operational Menu.
- <u>2</u> DIAG Displays the Diagnostic Menu.
- 3 SPFUN Displays the Special Function Menu.
- 4 SAVEDIR Displays the Save Test Menu Directory.
- 5 ICAO 81/ When followed by the Enter Key, ICAO 85 ICAO Modes are switched from ICAO 1981 Standard to ICAO 1985 Standard.

WARNING: SWITCHING ICAO MODES WILL CAUSE THE FOLLOWING MENU TO APPEAR (REFER TO FIGURE 41) AND THE MLS-800 TEST OPERATIONAL MENU TO BE REINITIALIZED TO THE DEFAULT VALUES.

I CAO 1985 General Purpose Auxiliary Data Word AD1 Showing Raw Data Format for all Undefined Auxiliary Data Words (Refer to Figure 39)

Aux Data: A Addr: 000 Parity: EEEEEEE
Data-1:000 Data-2:000 Data-3:000
Data-4:000 Data-5:000 Data-6:000 Data-7:0

ICAO 1985 Raw Data Format (AD1-AD4) Figure 39

- 1' Aux Data (A,B,C)
- 2' Address (0 to 377 Octal)
- 3' Parity Seven Binary Fields (Odd or Even)
- 4' Data-1 (O to 377 Octal)
- 5' Data-2 (0 to 377 Octal)
- 6' Data-3 (0 to 377 Octal)
- 7' Data-4 (O to 377 Octal)
- 8' Data-5 (0 to 377 Octal)
- 9' Data-6 (0 to 377 Octal)
- 10' Data-7 (0 to 1 Octal)

<u>k</u> ICAO 1985 General Purpose Data Word AD4 Showing Auxiliary Data Word A-4 Format (Refer to Figure 38)

ICAO 1985 Data Word AD4 (A-4 Format) Figure 38

- 1' Aux Data (A4)
- 2' Parity Seven Binary Fields (Odd or Even)
- 3' Back Azimuth Antenna Offset (-511 to +511m in 1m Increments)

Represents the minimum distance between the Back Azimuth antenna phase center and a vertical plane containing the runway center line.

4' Back Azimuth Antenna Alignment with Runway Center Line (-20.47° to +20.47° in 0.01° Increments)

Represents the minimum angle between the Back Azimuth antenna zero-degree guidance plane and the runway center line.

5' Back Azimuth to MLS Datum Point Distance (0 to 2047m in 1m Increments)

Represents the minimum distance between the Back Azimuth antenna and the vertical plane perpendicular to the center line which contains the MLS datum point.

6' Spare (Two Transmission Fields)

Field-1 (0 to 377 Octal) Field-2 (0 to 377 Octal)

j ICAO 1985 General Purpose Data Word AD3 Showing Auxiliary Data Word A-3 Format (Refer to Figure 37)

ICAO 1985 Data Word AD3 (A-3 Format) Figure 37

- 1' Aux Data (A3)
- 2' Parity Seven Binary Fields (Odd or Even)
- 3' DME Offset (-511 to +511m in 1m Increments)

Represents the minimum distance between the DME antenna phase center and a vertical plane containing the runway center line.

4' DME to MLS Datum Point Distance (-8191 to +8191m in 1m Increments)

Represents the minimum distance between the DME antenna phase center and a vertical plane perpendicular to the center line which contains the MLS datum point.

5' Spare (Four Transmission Fields)

Field-1 (0 to 377 Octal) Field-2 (0 to 377 Octal) Field-3 (0 to 377 Octal) Field-4 (0 to 1 Octal)

3' Elevation Antenna Offset (-511 to +511m
in 1m Increments)

Represents the minimum distance between the Elevation antenna phase center and the vertical plane containing the runway center line.

4' Elevation Antenna Height (-6.3 to +6.3m in 0.1m Increments)

Represents the height of the Elevation antenna phase center relative to the height of the MLS datum point.

5' MLS Datum Point to Threshold (0 to 1023m in 1m Increments)

Represents the distance measured along the runway center line from the MLS datum point to the runway threshold.

6' Spare (Three Transmission Fields)

Field-1 (0 to 377 Octal) Field-2 (0 to 377 Octal) Field-3 (0 to 77 Octal)

4' Approach Azimuth to MLS Datum Point Distance (0 to 8191m in 1m Increments)

Represents the minimum distance between the approach antenna phase center and the vertical plane perpendicular to the center line which contains the MLS datum point.

5' Approach Azimuth Alignment with Runway Center Line (-20.47° to 20.47° in 0.01° Increments)

Represents the minimum angle between the approach Azimuth antenna zero-degree guidance plane and the runway center line.

6' Approach Azimuth Antenna Coordinate System (0 - Conical, 1 - Planar)

Represents the coordinate system of the angle data transmitted by the approach Azimuth antenna.

7' Spare (Two Transmission Fields)

Field-1 (0 to 377 Octal) Field-2 (0 to 37 Octal)

NOTE: Auxiliary Data Word inputs are: A, B, C, AD1, AD2, AD3 or AD4.

i ICAO 1985 General Purpose Data Word AD2 Showing Auxiliary Data Word A-2 Format (Refer to Figure 36)

Aux Data : A2 Parity : E E E E E E E E E E L Antenna Offset : 000 EL Ant. Height: 0.0

MLS Datum to Thresh.: 0000 Spare : 000 000 00

ICAO 1985 Data Word AD2 (A-2 Format) Figure 36

1' Aux Data (A2)

2' Parity - Seven Binary Fields (Odd or Even)

g ICAO 1985 Data Word #6 (Refer to Figure 34)

Ground	Station	ID:	IFR	ata #	6	Parity: E E
İ						
L						

ICAO 1985 Data Word #6 Figure 34

1' MLS Ground Station Identifier (IFR)

Represents the last three (3) characters of the system identification. The characters are encoded in accordance with the 5-unit code of the International Telegraph Alphabet No. 2. Each character is followed by a parity bit.

- 2' Parity Odd or Even (00,0E,E0,EE)
- <u>h</u> ICAO 1985 General Purpose Data Word AD1 Showing Auxiliary Data Word A-1 Format (Refer to Figure 35)

Aux Data : AI Parity : E E E E E E E E AZ Ant. Offset: OOO AZ Ant. Co-ord. : O Spare: OOO OO

ICAO 1985 Data Word AD1 (A-1 Format) Figure 35

- 1' Aux Data (A1)
- 2' Parity Seven Binary Fields (Odd or Even)
- 3' Approach Azimuth Antenna Offset (-511 to +511m in 1m Increments)

Represents the minimum distance between the approach Azimuth antenna phase center and a vertical plan containing the runway center line.

f ICAO 1985 Data Word #5 (Refer to Figure 33)

BAZ Prop. Cov. Neg.: 42
BAZ Prop. Cov. Pos.: 42
BAZ Beamwidth : 1.0 Spare: 0 0 0 0

ICAO 1985 Data Word #5 Figure 33

1' Back Azimuth Proportional Coverage Negative Limit (0° to 42° in 2° Increments)

Represents the limit of the sector in which proportional Back Azimuth guidance is transmitted.

- 2' Parity Odd or Even (00,0E,E0,EE)
- 3' Back Azimuth Proportional Coverage Positive Limit (0° to 42° in 2° Increments)

Represents the limit of the sector in which proportional Back Azimuth guidance is transmitted.

4' Back Azimuth Beamwdith (0.5° to 4.0° in 0.5° Increments)

Represents the actual width of the scanning beam main lobe measured at the -3 dB points.

5' Spare - Five Binary Fields (0 or 1)

e ICAO 1985 Data Word #4 (Refer to Figure 32)

AZ Zero-Degree	Guidance	Data Plane	# 4	Parity:	E E	
BAZ Zero-Degree	Guidance	Plane	: 000			

ICAO 1985 Data Word #4 Figure 32

1' Approach Azimuth Zero-Degree Guidance Plane (0° to 359° in 1° Increments)

Represents the angle measured in the horizontal plane clockwise from Magnetic North to the zero-degree angle guidance plane of the approach Azimuth antenna. The vertex of the measured angle will be the approach Azimuth antenna phase center.

- 2' Parity Odd or Even (00,0E,E0,EE)
- 3' Back Azimuth Zero-Degree Guidance Plane (0° to 359° in 1° Increments)

Represents the angle measured in the horizontal plane clockwise from Magnetic North to the zero-degree angle guidance plane of the Back Azimuth antenna. The vertex of the measured angle will be the Back Azimuth antenna phase center.

d ICAO 1985 Data Word #3 (Refer to Figure 31)

AZ Beamwidth: I.O Parity: E E
EL Beamwidth: I.O
DME Distance: 0000.0 Spare: 0 0 0

ICAO 1985 Data Word #3 Figure 31

1' Approach Azimuth Beamwidth (0.5° to 4.0° in 0.5° Increments)

Represents the width of the scanning beam main lobe measured at the $-3~\mathrm{dB}$ points and defined in angular units on the antenna boresight in horizontal plane.

- 2' Parity Odd or Even (00,0E,E0,EE)
- 3' Elevation Beamwidth (0.5° to 2.5° in 0.5° Increments)

Represents the width of the scanning beam main lobe measured at the -3 dB points and defined in angular units on the antenna boresight in vertical plane.

4' DME Distance (0 to 6387.5m in 12.5m Increments)

Represents the distance measured parallel to the runway center line from the DME antenna phase center to the MLS datum point.

5' Spare - Three Binary Fields (0 or 1)

 $_{ extstyle e$

Min. Glide Path: 03.0 BAZ Status: I Parity: E E
DME Status: 1 Spare : 0 0 0 0 0

ICAO 1985 Data Word #2 Figure 30

1' Minimum Glide Path (2.0° to 14.7° in .1°
 Increments)

Represents the lowest angle of descent along the zero degree Azimuth that is consistent with published approach procedures and obstacle clearance criteria.

2' Back Azimuth Status (0 - Not Radiated, 1 - Radiated in Normal Mode)

Represents the operational status of Back Azimuth equipment

- 3' Parity Odd or Even (00,0E,E0,EE)
- 4' DME Status (00,01,10,11)

Represents the operational status of the DME equipment by the following:

00 - DME Transponder inoperative

10 - Only IA mode or DME/N available

01 - FA mode, Standard 1 available

11 - FA mode, Standard 2 available

5' Approach Azimuth Status (0 - Not Radiated, 1 - Radiated in Normal Mode)

Represents the operational status of the approach Azimuth equipment.

6' EL Status (O - Not Radiated, 1 - Radiated in Normal Mode)

Represents the operational status of the approach Elevation equipment.

7' Spare - Six Binary Fields (0 or 1)

b ICAO 1985 Data Word #1 (Refer to Figure 29)

AZ to Threshold Distance: 3000 Parity: E E
AZ Prop. Cov. Limit Neg.: 60 Cir. Sig.: 0
AZ Prop. Cov. Limit Pos.: 60 Spare: 0

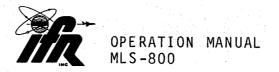
ICAO 1985 Data Word #1 Figure 29

1' Approach Azimuth to Threshold Distance (0 to 6300m in 100m Increments)

Represents the distance measured parallel to the runway center line from the approach Azimuth antenna to the runway landing threshold.

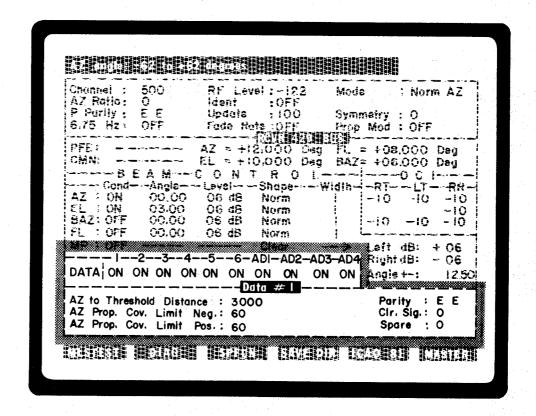
- 2' Parity Odd or Even (00,0E,E0,EE)
- 3' Approach Azimuth Proportional Coverage Negative Limit (0° to 60° in 2° Increments)

Represents the limit of the sector in which proportional approach Azimuth guidance is transmitted.

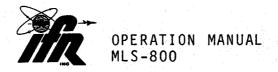

4' Clearance Signal Type (\emptyset = Pulse, 1 = Single Sideband)

Indicates the method of providing the Azimuth clearance signal.

5' Approach Azimuth Proportional Coverage Positive Limit (0° to 60° in 2° Increments)


Represents the limit of the sector in which proportional approach Azimuth guidance is transmitted.

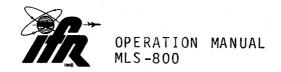
6' Spare - One Binary Field (0 or 1)


2 ICAO 1985 Data Word Field (Refer to Figure 28)

There are six defined Data Words which perform certain designated functions, plus four Auxiliary Data Words left open so each installation may define them to their specifications. A detailed explanation of the Data Word ON/OFF Switches and each Data Word within the Data Word field is shown as follows:

ICAO 1985 Data Word Field Figure 28

Data Word ON/OFF Switches - Enables ICAO 1985 Data Words 1 thru 6, AD1, AD2, AD3 or AD4.


j ICAO 1981 Data Word AUX (Refer to Figure 27).

			Oata Aux						-
Addres	s: 000	. •			Parity:	E	Ε	EE	.
Data	: 00	000	000	000	·				-
Data		000	000	000					1
L						_	_		

ICAO 1981 Data Word AUX Figure 27

The ICAO 1981 Data Word AUX is left open for the operator to program their own data using Octal coded numbers.

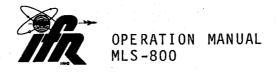
- 1' Address Transmission (0 to 377, First Eight Bits)
- 2' Parity (Four Bits-Odd or Even)
- 3' Data Transmission (0 to 17, First Four Bits of Fifty-two Bits)
- 4' Data Transmission (0 to 377, Second Part-Eight Bits)
- 5' Data Transmission (0 to 377, Third Part-Eight Bits)
- 6' Data Transmission (0 to 377, Fourth Part-Eight Bits)
- 7' Data Transmission (0 to 377, Fifth Part-Eight Bits)
- 8' Data Transmission (0 to 377, Sixth Part-Eight Bits)
- 9' Data Transmission (0 to 377, Seventh Part-Eight Bits)

i ICAO 1981 Data Word #8 (Refer to Figure 26)

EL Antenna Height : -1.0 Parity : E E
EL Antenna Offset : -150
MLS Datum Point to Threshold Distance: 000

ICAO 1981 Data Word #8 Figure 26

1' Elevation Antenna Height (-1.0 to +6.2m
in 0.2m Increments)


Represents the height of the Elevation antenna phase center relative to the height of the MLS datum point.

- 2' Parity Odd and Even (00/0E/E0/EE)
- 3' Elevation Antenna Offset (-150 to +150m
 in 10m Increments)

Represents the minimum distance between the Elevation antenna phase center and the vertical plane containing the runway center line.

4' MLS Datum Point to Threshold Distance (0 to 635m in 5m Increments)

Represents the distance measured along the runway center line from the MLS datum point to the runway threshold.

h ICAO 1981 Data Word #7 (Refer to Figure 25)

Ground Equip.: O O Parity: E E

BAZ Ant. Dist.: OOOO BAZ Prop. Cov. Neg.: -40

BAZ Beamwidth: I BAZ Prop. Cov. Pos.: 40 Spare: O

ICAO 1981 Data Word #7 Figure 25

1' Ground Equipment Performance Level - Two Binary Bits (0 or 1)

Represents the operational status of the equipment in use.

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' Back Azimuth Antenna Distance (0 to 3100m in 100m Increments)

Represents the horizontal distance measured parallel to the runway center line from the Back Azimuth antenna plane center to the Back Azimuth reference datum.

4' Back Azimuth Proportional Coverage Limit (Negative Limit) (-10° to -40° in 2° Increments)

Represents the limit of the sector in which proportional Back Azimuth guidance is transmitted.

5' Back Azimuth Beamwidth (1.0° to 4.0° in 1° Increments)

Represents the width of the scanning beam main lobe measured at the $-3\ dB$ points.

6' Back Azimuth Proportional Coverage Limit (Positive Limit) (+10° to +40° in 2° Increments)

Represents the limit of the sector in which proportional Back Azimuth guidance is transmitted.

7' Spare - One Binary Field (0 or 1)

g ICAO 1981 Data Word #6 (Refer to Figure 24)

ĺ			——————Da	ta #/6		
	Ground	Station	Identifier:	IFR	Parity:	EE
į	L				 	

ICAO 1981 Data Word #6 Figure 24

1' MLS Ground Station Identifier (IFR)

Represents the last three (3) characters of the system identification. The characters are encoded in accordance with the 5-unit code of the International Telegraph Alphabet No. 2. Each character is followed by a parity bit.

2' Parity - Odd or Even (00/0E/E0/EE)

f ICAO 1981 Data Word #5 (Refer to Figure 23)

		—— —— Dat	a <u>#</u> 5	
AZ Antenna Off	set;	-126		Parity: E E
DME Channel	:	0000	00000	Spare: 0
DME P	:	NO		i
<u></u>				

ICAO 1981 Data Word #5 Figure 23

1' Approach Azimuth Antenna Offset (-126 to +126m in 2m Increments)

Represents the minimum distance between the approach Azimuth antenna phase center and a vertical plane containing the runway center line.

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' DME Channel Nine Binary Bits (0 or 1)

Represents the DME channel associated with the selected MLS channel.

4' DME/P (Yes = DME/P, No = DME)

Represents whether the equipment in use is DME or DME/P.

5' Spare - One Binary Field (0 or 1)

e ICAO 1981 Data Word #4 (Refer to Figure 22)

			Data # 4	 		
DME	Distance	to MLS	Datum: -8188	Parity:	E.	Ε
DME	Offset		: -155			
L			. 	 		_

ICAO 1981 Data Word #4 Figure 22

1' DME Distance to MLS Datum (-8188 to +8188m in 4m Increments)

Represents the distance measured parallel to the runway center line from the DME antenna phase center to the MLS datum point.

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' DME Offset (-155 to +155m in 5m Increments)

Represents the minimum distance between the DME antenna phase center and a vertical plane containing the runway center line.

 $\underline{\mathsf{d}}$ ICAO 1981 Data Word #3 (Refer to Figure 21)

Beamwidth: AZ = 1.00 FL = 1.00 EL = 1.00 Parity :E E
Approach AZ Sector Alert: -60 to -20: 1
-20 to -05: 1 +05 to +20: 1 +20 to +60: 1

ICAO 1981 Data Word #3 Figure 21

1' Approach Azimuth Beamwidth

Represents the width of the scanning beam main lobe measured at the -3 dB points and defined in angular units on the antenna bore sight, in the horizontal plane for the Azimuth and vertical plane for the Elevation.

AZ - $(0.5^{\circ} \text{ to } 4.0^{\circ} \text{ in } 0.5^{\circ} \text{ Increments})$ FL - $(0.5^{\circ} \text{ to } 1.0^{\circ} \text{ in } 0.25^{\circ} \text{ Increments})$ EL - $(0.5^{\circ} \text{ to } 2.5^{\circ} \text{ in } 0.5^{\circ} \text{ Increments})$

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' Approach Azimuth Sector Guidance Alert

Represents the Elevation angle in the specified Azimuth sector below which quidance is unreliable or unsafe.

-60° to -20° for Elevation Angles 1° to 8° in 1° Increments

-20° to -5° for Elevation Angles 1° to 4° in 1° Increments

+5° to +20° for Elevation Angles 1° to 4° in 1° Increments

+20° to +60° for Elevation Angles 1° to 8° in 1° Increments

c ICAO 1981 Data Word #2 (Refer to Figure 20)

Ground Equipment Status: O O Parity : E E
BAZ Next : YES Min Glide Path: 3.0
DME Status : O O Spare: O O O O O

ICAO 1981 Data Word #2 Figure 20

1' Ground Equipment Status (Use is not specified)

Represents the operational status of the equipment in use.

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' Back Azimuth Next (Yes or No)

Indicates if the next function to be transmitted is Back Azimuth.

4' Minimum Glide Path (2.0° to 8.3° in 0.1° Increments).

Represents the lowest angle of descent along the zero degree Azimuth that is consistent with published approach procedures and obstacle clearance criteria.

5' DME Status (Use is not specified)

Represents the operational status of the DME equipment in use.

6' Spare - Seven Binary Fields (0 or 1)

b ICAO 1981 Data Word #1 (Refer to Figure 19)

AZ to Threshold Distance : 3000 Parity: E E
Approach AZ Proportional Coverage Limit: -60 Clear: 0
Approach AZ Proportional Coverage Limit: 60 Spare: 0

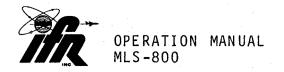
ICAO 1981 Data Word #1 Figure 19

1' Approach Azimuth to Threshold Distance (0 to 6300m in 100m Increments)

Represents the distance measured parallel to the runway center line from the approach Azimuth antenna to the runway landing threshold.

- 2' Parity Odd or Even (00/0E/E0/EE)
- 3' Approach Azimuth Proportional Coverage Limit (Negative Limit) (-10° to -62° in 2° Increments).

Represents the limit of the sector in which proportional approach Azimuth guidance is transmitted.


4' Clearance Signal type (Ø = pulse, 1 = Single Sideband)

Indicates the method of providing the Azimuth Clearance Signal.

5' Approach Azimuth Proportional Coverage Limit (Positive Limit) (+10° to +62° in 2° Increments)

Represents the limit of the sector in which proportional approach Azimuth guidance is transmitted.

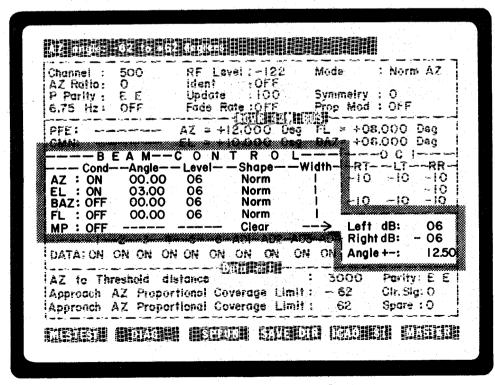
6' Spare - One Binary Field (0 or 1)

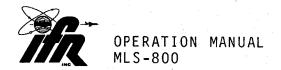
(g) Data Word Field

 $\underline{1}$ ICAO 1981 Data Word Field (Refer to Figure 18)

There are eight defined Data Words which perform certain designated functions, plus one AUX Data Word which is left open for the operator's use. The AUX Data Word is left open so each installation may define it to their specifications. A detailed explanation of the Data Word ON/OFF Switches and each Data Word within the Data Word field is shown as follows:

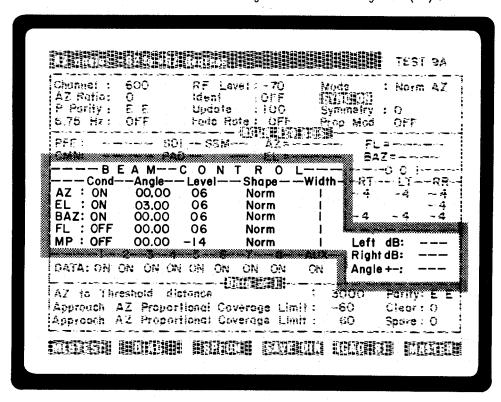
Channel : AZ Rolio:	600		rel : - 70	Mode	. Nor	m AZ
P Parity :	O EE,	ideni Vodeje	: OFF : 100	Branda Symme	uui trv:O	
6.75 Hz :	OFF	Foda Ro		Prop N		
PFE:	en	I SSM-				
CMN:		n === ================================	Els-		RA7=	
	EAM-	-	TRO			
Cond-				-Width-i-	RT LT-	
AZ : ON	00,00	06 dB	Norm		44	-4
EL : ON	03.00	06 dB	Norm			-4
BAZ: ON	00.00	06 dB	Norm		4 -4	-4
FL : OFF	00.00	- 06 dB	Norm	: -		
MP I OFF	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	- 14 dB	to the contract of the first of	and the second s	eft d8:	
	-234	56-	-78	– AUX—–∰	light dB:	
DATA ON	ON ON OI	NO NO N	ON ON	ON 👺	ngie +-:	
		D	ata #			
AZ to Thr	eshold di			: 300	O Parity	/: E E
Approach A	AZ Propoi	rtional Cov	erage Lim			
Approach A						
י ווטשטועער	72 1 1 OP O	1101141 001	rorago Lili		Spure	


ICAO 1981 Data Word Field Figure 18


<u>a</u> ICAO 1981 Data Word - Enables ICAO 1981 ON/OFF Switches Data Words 1 thru 8 or AUX Data Word.

OPERATION MANUAL MLS-800

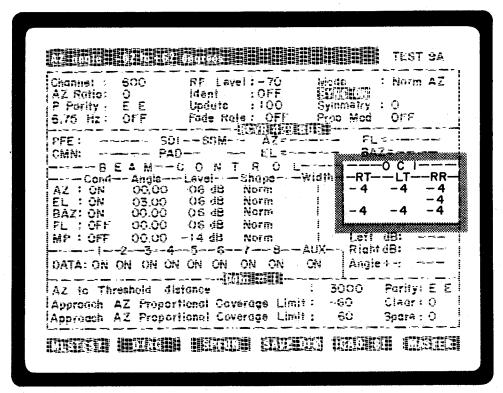
- 4. Shape
- Displays the Beam Shape (Normal Pulse/½ Pulse) for Azimuth, Elevation, Back Azimuth and Flare.
- NOTE: The Multipath Beam Shape has three selections (Normal Pulse, ½ Pulse and Clearance Pulse). When the Beam Shape is switched to Clearance Pulse, the Beam Control Field changes, allowing control of the left and right Clearance Beam level, and their common angle (Refer to Figure 17). ½ Pulse will appear as Normal Pulse for Angles at the midpoint.
- $\frac{5}{2}$ Width Displays the Beam Width in degrees (0.5, 1, 2, 3, 4, 5).
- 6 Left dB Displays Left Clearance Beam Level in dB relative to preamble level (-3 dBc to +13 dBc).
- 7 Right dB Displays Right Clearance Beam Level in dB relative to preamble level (-3 dBc to +13 dBc).
- 8 Angle Displays Clearance Beam Pair Offset from center ±1° minimum to ±61° for Azimuth, ±1° to ±41° for High Rate AZ and Back Azimuth, and not applicable for Elevation and Flare.



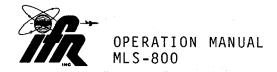
(f) Beam Control Field (Refer to Figure 16)

Allows control of individual beam functions. The Switch Condition, Beam Angle, Beam Modulation Level, Beam Shape and Beam Width are displayed within this field for the Azimuth, Elevation, Back Azimuth, Flare or Multipath Beams.

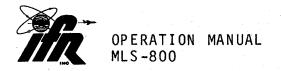
NOTE: Azimuth, Elevation, Back Azimuth and Flare are selected for editing by the Function Select Keys with Sync (1), and Multipath is selected for editing by the Function Select Keys without Sync (4).


Beam Control Field Figure 16

- Switch Condition Displays the operating status (ON/OFF) for Azimuth, Elevation, Back Azimuth, Flare or Multipath.
- 2 Angle Displays the Beam Angle in degrees.
- <u>3</u> Level Displays the Beam Modulation Level in dB relative to the preamble level.


(e) Out of Coverage Indicator (OCI) Field (Refer to Figure 15)

The Out of Coverage Indicator Right (RT), Left (LT) and Rear (RR) is displayed in decibels within this field for Azimuth, Elevation or Back Azimuth, when one or the other is selected by the front panel controls. The level of the simulated signal being transmitted can vary from -4 to +7 dB relative to preamble.



Out of Coverage Indicator (OCI) Field Figure 15

- 1 RT Displays the Right Out of Coverage Level in decibels, relative to the preamble level for either Azimuth or Back Azimuth.
- 2 LT Displays the Left Out of Coverage Level in decibels, relative to the preamble level for either Azimuth or Back Azimuth.
- RR Displays the Rear Out of Coverage Level in decibels, relative to the preamble level for either Azimuth, Elevation or Back Azimuth.

- 2 CMN Displays in degrees the Control Motion Noise for Azimuth, Elevation, Back Azimuth or Flare, according to the Filter Configuration for Control Motion Noise as shown in Appendix C. The Control Motion Noise displayed depends on which Sync function is selected within the Beam Control Field. The Control Motion Noise is dashed when >1°.
- 3 SDI Displays the condition (0 or 1) of ARINC 429 Data Bits 9 and 10 for the Source Designation Identifier of the function in Sync. (Refer to Receiver Manufacturer Manual for Bit Definition).
- 4 PAD Displays the condition (0 or 1) of ARINC 429 Data Bits 11 and 12 for the Pad of the function in Sync. (Refer to Receiver Manufacturer Manual for Bit Definition).
- 5 SSM Displays the condition (0 or 1) of ARINC 429 Data Bits 30 and 31 for the Sign Status Matrix of the function in Sync. (Refer to Receiver Manufacturer Manual for Bit Definition).
- OFF Displays OFF when no data is being received. When data is being received the field is blank or displaying the following Receive Error Messages:
 - a PE Parity Error in 429 Data.
 - <u>b</u> OE Overrun Error for data not being read before new data is written.
 - <u>c</u> WE Word Error for data not able to be received correctly.

(d) RCVR 429 Received Data Field (Refer to Figure 14)

The RF data beam from the MLS-800 Test Set to the MLS receiver (UUT) is interpreted, returned via the ARINC 429 BUS Connector (13) and observed on The Test Menu Display (15). The returned data displayed on the CRT is:

Azimuth $\pm 62^{\circ}$ Elevation -1.5° to $+29.5^{\circ}$ Back Azimuth $\pm 41^{\circ}$ Flare -2° to $+10^{\circ}$

Channel : AZ Ratio:	600 0 E E	ident	el: -70 : OFF	Mode 1971/1911	: Norm]	ÀΖ
P Parity :		Update	: 100	Symmetr	y : 0	****
PFE:	SD	SSM-	RCVR 429	BUS	FI =	
CMN:)OFF	- EL =-		BAZ=	_
20.0	Angla		Charac	Width-I-R		
AZ : ON	00,00		Norm	- 4	-4	-4
EL : ON		06 dB				- 4
BAZ: ON		06 dB		- 4	· -	
	00,00	06 dB -14 dB	Norm		1 d8: -	
MP : OFF	- 00.00 234-	-:4 85 -56	Norm -78		ili 06. –	
DATA: ON		ON ON	ON UN		gla +-: ···	
AP AS The	achaid i die			3000	Farity	 6 5
AZ to Thr			amaa lbai		Glear:	
Approach A Approach A	iz Propor	Honol Cov	erage Limi	1: 60	Spere:	1000

RCVR 429 Received Data Field Figure 14

PFE - Displays in degrees the Path Following Error for Azimuth, Elevation, Back Azimuth or Flare, according to the Filter Configuration for Path Following Error as shown in Appendix C. The Path Following Error displayed depends on which Sync function is selected within the Beam Control Field. The Path Following Error is dashed when error is >1° or <-1°.

- Pre Parity Displays the selected even or odd preamble parity bits (00/0E/E0/EE) for the beam which the Sync signal is applied.
- Update Displays the variable update rate for Sync Beam (0%, 25%, 45%, 55%, 75% or 100%).
- Symmetry Displays the Sync beam pair offset that produces a variation from the receiver time reference code for receiver testing at -60 to +60 in 1 µs steps.
- 10 6.75 Hz Displays the condition (ON/OFF) required for the Signal Level Variation Test.
- 11 Fade Rate Displays the simulation of ground reflections causing modulation level to oscillate (1 KHz, 1 Hz, 0.05 Hz or OFF).
- 12 Prop Mod Displays propeller or rotor modulation simulation (0 to 199 Hz in 1 Hz steps or OFF).

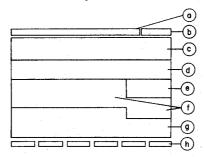
NOTE: Only one of the functions (6.75 Hz, Fade Rate, Prop Mod) can operate at any one time. When one function is switched ON, the other two functions are automatically switched OFF.

(c) Transmission Characteristics Field (Refer to Figure 13)

					I TEST	94
Channel:		RF Leve	1:-70 :OFF	Mode Sync on	: Norm	AZ
AZ Ratio: P Parity :	EE	Ident Update	: 100	Symmetry	ý : O	
6.75 Hz:		Fade Rate		Prop Mo		
PFE: -	SDI PAD					-
manus Capa	E A MC Angle	ONT	R O L Shape — —)	Width-I-RT	-0 C I-	-RR
AZ ON	00,00	06.48	Norm	- 4	-4	-4
BAZ: ON	00.80 00.00	UB GB QB GB	Norm Norm	-4	4	-4
FL : OFF	00.00 00.00 -	06 dB	Norm	L	i d8:	
	234	-56	78	aux— , Rig	htd8: -	
DATA: ON	ON ON ON		on on Member —	ON And] e +-: ~ 	
AZ 10 TI	reshold dist	ange			Parity:	
Approach	AZ Proporti AZ Proporti	onal Cove onal Cove	irage Limii Irage Limii	: ~50 : 60	Clear: Spare:	•
	MESS CENTER (SEA)					i

Transmission Characteristics Field Figure 13

- <u>1</u> Channel Displays the MLS Channel, selectable from 500-699.
- 2 RF Level Displays the RF Output Level, selectable from -17 to -122 dBm.
- Mode Displays the selected primary mode of operation (Normal Azimuth or High Rate Azimuth).
- 4 AZ Ratio Displays the status (0 dBc or -75 dBc) of the Azimuth to Elevation ratio (a 75 dB pad is inserted).
- 5 Ident Displays the Ident Code (Morse Code Identification Sequence) in an active, inactive or continuous tone state (ON/OFF/CONT).
- 6 Sync Flag Displays the condition (SYNC ON or "BLANK") and the Sync Beam selected (AZ, EL, BAZ, FL or DATA).


AZ angle:	-62 to +62	degrees	\$			TEST	9A
Channel:	600		vel: -70	Mode		Norm	AZ
AZ Ratio: P Parity :	O E E	ident Update	: OFF : 100	SYN	netry :	0	
	OFF		ate : OFF		Mod		
			-RCVR 429	BUS -			
PFE:		1SSM				z	
CMN:		DOFF				•	
Coad	E A M	C O N.	TROI Shape		PT	O C 1-	
AZ : ON	OOOO	06	Norm	-w.u.n	-4	-4	-4
EL : ON	03.00		Norm	i i	• •	•	-4
BAZ: ON	00.00		Norm	1 1	-4	-4	-4
	00.00						
MP : OFF			Norm	1	Left		
			78		_		
DATA , ON	UN UN U		ON ON	ON .	Angle	 ;	
AZ to Th	reshold di	stance	ota # —	: 30	00	Parity:	EE
Approach	AZ Propor	tional Co	verage Lim		0	Clear :	
	AZ Propor				0	Spare :	0

Test Operational Menu Figure 9

(4) Test Operational Menu (Refer to Figure 9)

The displayed Test Operational Menu is grouped into a Prompt Line and seven distinct fields (Refer to Figure 10) which include:

- (a) Prompt Line
- (b) Menu Label Field
- (c) Transmission Characteristics Field
- (d) ARINC 429 Received Data Field
- (e) Out Of Coverage Indicator (OCI) Field
- (f) Beam Control Field
- (g) Data Word Field (ICAO 1981) (ICAO 1985)
- (h) Special Function Key Label Field

Test Operational Menu Fields Figure 10

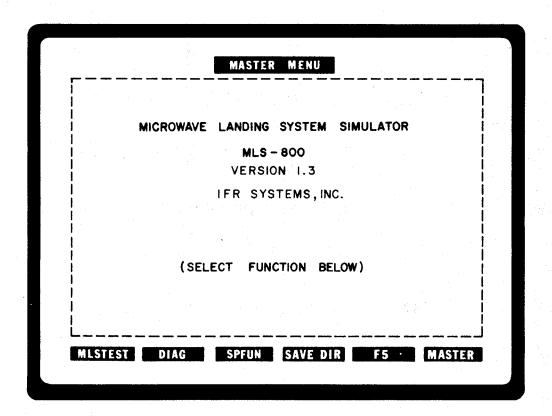
(3) Save Page Directory Menu (Refer to Figure 8)

The Save Page Directory Menu displays the current state of the twelve available storage pages in the MLS-800 Non-Volatile memory.

PAGE W PROT PAGE NUMBER STATUS NAME	·	lect Function Bel			<u> </u>
NUMBER STATUS NAME	!		PAGE DIRECTORY		
YES PAGE	l	PAGE	W PROT	PAGE	i
YES PAGE	-	NUMBER	STATUS	NAME	.
		2 3 4 5 6 7 8 9	NO YES NO NO YES NO NO NO	PAGE 2 PAGE 4 PAGE 5	

Save Page Directory Menu Figure 8

- (a) Page Number Displays each of the twelve storage pages.
- (b) Write Protect Displays the condition of Write (W PROT) Status Protect for the twelve storage pages.
- (c) Page Name


 Displays the operator selected name given to the menu in the storage page (Refer to 1-2-4, Para. 4A(2) for writing name).

NOTE: Dashes indicate a nonactive or non-applicable data field.

(2) Master Menu (Refer to Figure 7)

The Master Menu is the log-in point of the MLS-800. The Master Menu allows the operator to program for display the Test Operational Menu, Diagnostic Menu, Special Function Menu or Save Page Directory Menu.

Master Menu Figure 7

D. Menu Definition

The displayed menu functions are defined as follows:

(1) Power Up Self Test (Refer to Figure 6)

The Power Up Self Test is displayed when the MLS-800 test set is switched on to alert the operator of the condition of the Ram, Rom, Mainpath, Multipath, RCVR Channel 1 and RCVR Channel 2.

		AUXILIARY	MENU	<u> </u>	 	
·		PLEASE	WAIT			
ļ.		SELF	TEST		į	
	RAM	TEST	: 1	VERIFIED		
	ROM	TEST		VERIFIED		
İ	MAINPATH	MODULATION	: [ACTIVE		-
İ	MULTIPATH	MODULATION	: [INACTIVE	į	
	RCVR	CHANNEL I	: [ACTIVE	1	
1	RCVR	CHANNEL 2	: [ACTIVE		
					1	
<u> </u>					 	
	- -					

Power Up Self Test Figure 6

(a) Displays the condition of the Ram and Rom as follows:

VERIFIED - Ram or Rom is operating properly. FAILED - Ram or Rom is not operating properly.

(b) Displays the condition of the Main Path Modulation, Multipath Modulation, 429 Channel 1 and 429 Channel 2 as follows:

ACTIVE - System is operating properly.

INACTIVE - System is not operating properly.

B. Operational Display Menus

The Operational Display Menus are utilized by the Keyboard controls for the execution of menu programming and component testing. The five Operational Display Menus are:

- (1) Master Menu
- (2) Test Operational Menu
- (3) Diagnostic Menu
- (4) Special Function Menu
- (5) Save Page Directory Menu
- C. Operator Intervention

When operating the MLS-800 Test Set utilizing the front panel Keyboard Data Entry Keys, the operator can change data value or status within the data field by use of the Keyboard Data Entry Keys or Slew Keys in conjunction with the Cursor Keys.

- NOTE: The cursor is displayed as blinking reverse video. The entire data field that the cursor is pointing towards will be displayed as non-blinking reverse video.
- (1) Changing data value or status within the data field using the Keyboard Data Entry Keys:
 - (a) Using Cursor Keys, position cursor directly over data field prior to making value change.
 - (b) Use Keyboard Data Entry Keys to change data value.
 - (c) Press Enter Key.
- (2) Changing data value or selection within the data field using the Slew Keys:
 - (a) Using Cursor Keys, position cursor directly over data field prior to making value change.
 - (b) Using Slew Keys to change data value, simply press the ↑ Key to increase value and the ↑ Key to decrease value. The ← or → Slew Key will change selections within the data field. The selections may be continuously cycled either forward (↑ Slew Key) or backwards (↑ Slew Key). The "FAST" Slew Keys will generally cause the most significant half of a data field to either increase or decrease whereas the "SLOW" Slew Keys cause the least significant half to change.

Example #4 - Sync ICAO 1985 Data Words (Data AD3)

Key	Menu
SYNC	Select SYNC: AZ, EL, FL, BAZ, or DATA
	SYNC ON
AUX	Select Auxiliary Data Word: AD1 thru AD4
	SYNC ON
	OFF
3	DATA: Using SLEW coloct ON or OFF
	DATA: Using SLEW select ON or OFF SYNC ON AD3
	The state of the s
	DATA OFF

Example #3 - Sync ICAO 1981 Data Words (Data #1)

Key	Menu	
SYNC	Select SYNC: AZ, EL, FL, BAZ, or DATA	
	SYNC	ON
		<u></u>
DATA	Select DATA WORD: I thru 8 or AUX	
	SYNC	ON
	OFF	
1	DATA: Using SLEW select ON or OFF	
	SYNC ON	DATA I
	DATA OFF	

NOTE: The "Warning" Prompt Line will blink on and off four times, then return to previous prompt line.

Example #2 - Switching AZ ON

Key	Menu	
7 		
AZ	AZ angle: -62 to +62 degrees	
		SYNC ON AZ
	PFE	
	CMN	
	00.00	
		✓
-	AZ Cond: Using SLEW select ON	or OFF
		SYNC ON AZ
		SINC ON AL
	PFE	
	CMN	
	OFF	
**4.		
SLEW	AZ Cond: Using SLEW select ON	or OFF
	AL Cond. Osing Salar Salar	
		SYNC ON AZ
	P Parity	
	PFE	
	CMN	
* .	AZ ON	
		\sim \sim

(d) Operating Instructions

Example #1 - Sync AZ Beam

Key	<u> Menu</u>	
SYNC	Select SYNC: AZ, EL, FL, BAZ, or DATA	
		SYNC ON
AZ	Warning: The synced function is OFF	
		SYNC ON AZ
	PFE CMN	

NOTE: The "Warning" Prompt line will blink on and off four times, then return to previous prompt line.

(7) Sync

(a) Sync Key

The Sync function operates on a push ON/OFF key. To activate and deactivate the Sync function, the Sync key must be used.

NOTE: The Sync function stays on the assigned beam until the Sync function is deactivated. The Sync function is active on only one function at any one time.

(b) Sync Flag

The Sync function is used to put a Sync beam on the following Function Select Keys (AZ, EL, FL, BAZ and DATA). Whenever the Sync Flag function is activated, the Sync Flag is displayed in the Transmission Characteristics field of the Test Operational Menu. The Sync Flag appears as one of the following:

SYNC ON	SYNC ON DATA 2	SYNC ON DATA 8
SYNC ON AZ	SYNC ON DATA 3	SYNC ON DATA AUX
SYNC ON EL	SYNC ON DATA 4	SYNC ON AD1
SYNC ON FL	SYNC ON DATA 5	SYNC ON AD 2
SYNC ON BAZ	SYNC ON DATA 6	SYNC ON AD3
SYNC ON DATA I	SYNC ON DATA 7	SYNC ON AD4

(c) Corresponding Sync Beam Functions

The Corresponding Sync Beam Functions operate only when the Sync beam is activated. When the Sync beam is activated, the function titles appear in reverse video if functions are active. The Corresponding Sync Beam Functions operate on the AZ, EL, FL, BAZ and DATA WORD transmissions.

Symmetry	PAD	PFE
P Parity	SDI	CMN
Update	SSM	MP

NOTE: When the Sync beam is deactivated, the Corresponding Sync Beam Functions (which are internally active) change from reverse video to normal video, and the functions are disabled.

(6) Escape

The Escape function provides the operator with the option of changing the projected command before it is entered into the Test Operational Menu.

(a) Command Escape

Example #1 - Escape Command (-58.60)

Step #1: Desired Command displayed -58.60

Step #2: Press Escape Key

Using the Escape Key, the operator returns to the previous field value.

If the operator presses the Enter key after the desired command, the Escape key will not return to previous field value.

(b) Data Word Escape

Example #1 - Escape Data Word

Step #1: Press Data Key

DATA

Step #2: Press Escape Key

ESC

NOTE: The Escape function is the only key which allows the operator to disregard the Data Word Prompt Line instructions above the Test Operational Menu.

NOTE: If the operator depresses a number key after the Data key, the Escape key will not return the field readout to previous field value.

(5) Delete

The Delete function allows the operator to delete parts or entire commands from the fields of the Test Operational Menu. At any time, the operator may stop the delete process and insert into the deleted spaces the desired command. The command digit to be deleted is marked by the flashing cursor.

(a) The Delete function will change all command numbers to (0), and the negative value (-) to positive value (+) when deleting the entire command.

-58.60

00.00

PRESENT COMMAND

DELETED COMMAND

(b) The Delete function acts as a backspace key, going from right (least significant digit) to left (most significant digit).

62.00

NOTE: When the Delete function has been started, the desired replacement command must be entered into the Test Operational Menu before the cursor is free to move to other fields.

(3) Purge

(4)

Key

The Purge function allows the operator to erase a test menu from the twelve available storage pages provided in the MLS-800 Non-Volatile Memory. The Purge function will erase the test menu and all preserving functions pending the test menu (Refer to 1-2-4, Para. 4A(2)).

Exampi	e #1 - Purge Page b
Key	Prompt Line
PURGE	PURGE: Select page number 1 to 12; press ENTER
6	PURGE: Select page number 1 to 12; press ENTER
ENTER	
NOTE:	The Purge function will not erase the test menu displayed in front of the operator. When the operator switches to another test menu the displayed test menu will be deleted.
Write	Protect (W PROT)
tect a availa Non-Voimmedi	tite Protect function allows the operator to protest menu from being overwritten in the twelve able storage pages provided in the MLS-800 platile Memory. The Write Protect function is an ate option in the Save function (Refer to 1-2-4, $4A(2)$).

W PROT W PROT: Select page number 1 to 12; press ENTER

Prompt Line

Example #1 - Write Protect Page 6

W PROT: Select page number I to 12; press ENTER

ENTER

Example #2 - Save w/ Write Protect Test Menu 6

SAVE: Select page number I to I2; press ENTER

SAVE: Select page number I to I2; press ENTER

ENTER

SLEW in the name and ENTER; press ESC to ignore name

SLEW

SLEW in the name and ENTER; press ESC to ignore name

ENTER

Write Protect Required: Yes: "WPROT" No: "ENTER"

Note:

Name is selected character by character.

Choice of character is: A-Z, 0-9, -, # or

Blank Space. When desired character is

displayed, move cursor to next character. When

name is finished, press Enter to log on to Save

Page Directory (Refer to Figure 8).

(2) Save

The Save function allows the operator to store a test menu in the twelve available storage pages provided in the MLS-800 Non-Volatile Memory.

Example #1 - Save w/o Write Protect Test Menu 6

SAVE: Select page number I to I2; press ENTER

SAVE: Select page number I to I2; press ENTER

ENTER

SLEW in the name and ENTER; press ESC to ignore name

SLEW

SLEW in the name and ENTER; press ESC to ignore name

ENTER

Write Protect Required: Yes: "W PROT" No: "ENTER"

Note:
Name is selected character by character.
Choice of character is: A-Z, O-9, -, # or
Blank Space. When desired character is
displayed, move cursor to next character. When
name is finished, press Enter to log on to
Save Page Directory (Refer to Figure 8).

If desired Save page is full, the following Prompt Line will appear:

Page 6 is full, press ENTER if overwrite is desired

If desired Save page is Write Protected, the following Prompt Line will flash on and off four times, then return to previous Prompt Line:

Cannot save; Page 6 is Write Protected

4. General Operating Procedures

A. Keyboard Operation

Using the MLS-800 Keyboard, the operator can display, store, retrieve, erase and automatically execute test data according to the Keyboard operating requirements.

(1) Recall

The Recall function allows the operator to pull a test menu from the twelve available storage pages provided in the MLS-800 Non-Volatile Memory.

Example #1 - Recall Storage Page 6

Kev

Prompt Line

RECALL: Select page number 1 to 12; press ENTER

RECALL: Select page number 1 to 12; press ENTER

Depressing the Keyboard keys above will initialize the Recall function and the Please Wait Menu (below) will appear on the CRT, followed by the test menu stored in the desired storage page.

If desired Recall page is empty, the following Prompt Line will flash on and off four times, then return to previous Prompt Line.

Page 6 is empty

NOTE: The Recall projects a copy of the test menu in the storage pages, so the operator is not required to apply the Save function to the test menu which is recalled.

3. MLS-800 Performance Evaluation

A. General

The MLS-800 is equipped with a Power Up Self Test (Refer to 1-2-4, Figure 6) which is performed each time power is reinstated to the test set, and six Diagnostic Tests (Refer to 1-2-4, Figure 48) for the operator to program and perform whenever power is applied to the test set.

NOTE: The 50Ω Loads (Refer to Appendix F) must be connected to the Rear Panel of the test set (Refer to 1-2-2, Figure 4) when performing the Performance Evaluation.

B. MLS-800 Rear Panel

ITEM NAME DESCRIPTION

(18) 750 MHz RF Output Connector
750 MHz Modulated RF Output.

(19) External Reference Input Connector

Input Connector for an external 10 MHz (± 60 Hz) reference signal to be connected to the source generation circuit.

- (20) 800 MHz VCO ÷ 4 Output Connector 800 MHz VCO ÷ 4 Output.
- (21) GPIB Connector

24 PIN female connector conforming to IEEE standard 488-1978 for interface of general purpose programmable instrumentation (active only with GPIB option installed).

(22) DC Fuse

10 Amp - 32 Volt

(23) DC Power Connector

DC Power Input Connector for 11 to 30 VDC supply.

(24) AC Power Connector

AC Power Input Connector for 103.5 to 266 VAC supply at 45 to 440 Hz.

(25) AC Line Fuse

2 Amp - 250 Volt

ITEM NAME

DESCRIPTION

(9) Power Indicator Lamp

> Illuminates when internal or external power is applied to test set.

(10) Video Output Connector

Provides an output from the Video Detector for use by an external Oscilloscope to verify proper operation of the test set.

(11) Sync Output Connector

Provides a Sync signal for an Oscilloscope trigger.

(12) Special Function Keys

Functions are defined by the 24th line of the displayed menu.

(13) ARINC 429 BUS I/O Connector

Input/Output Connector for ARINC 429 data.

(14) RF Out Connector

Provides the RF Output signal to the MLS Receiver.

(15) Test Menu Display

7" Diagonal CRT for Data Display.

(16) Remote Indicator Lamp

Illuminates when MLS-800 is in Remote (GPIB) Operation.

(17) Intensity Control

Controls intensity of CRT. Clockwise rotation of control increases intensity, while counter-clockwise rotation of control decreases intensity.

DO NOT OPERATE CRT DISPLAY WITH THE CAUTION: INTENSITY SET EXCESSIVELY HIGH, AS PERMANENT DAMAGE TO THE CRT MAY RESULT.

ITEM NAME

DESCRIPTION

(6) Cursor Keys

These keys are used to control the movement and positioning of the CRT cursor. The cursor is displayed as blinking reverse video, which moves from field to field, not character to character, on the Test Operational Menu.

- Moves the cursor UP the test menu from data field to data field.

- Moves the cursor RIGHT on the test menu from data field to data field.

- Moves the cursor DOWN the test menu from data field to data field.

- Moves the cursor LEFT on the test menu from data field to data field.

(7) Data Slew Keys

The Slew Keys are used as an alternate method, to the Data Entry Keys, for changing data within the data field. The fast Slew Keys will increment/decrement the most significant digits within the data field; whereas, the slow Slew Keys will increment/decrement the least significant digits.

- FAST SLOW
- Increments data with the data field.
- Decrements data within the data field.

(8) PWR/OFF/BATT Switch

Applies/Interrupts power to MLS-800 as follows:

"PWR" Position - MLS-800 is powered by external AC or DC power source.

"OFF" Position - MLS-800 is "OFF".

"BATT" Position - MLS-800 is powered by internal battery (this is a momentary spring-loaded switch to the "OFF" position).

NOTE: Internal battery is continuously charged when external AC power or external DC power above 15 VDC is connected to set.

ITEM

DESCRIPTION

(4) Function Select Keys Without Sync

NAME

These keys move the cursor to the selected special function data field on the Test Menu Display (MP-Multipath, RF LVL-RF Level and CHNL-Channel).

- Moves the cursor to the Multipath angle item within the Beam Control field of the Test Operational Menu.

- Moves the cursor to the RF Level field within the Transmission Characteristics field of the Test Operational Menu.

- Moves the cursor to the RF Frequency channel number within the Transmission Characteristics field of the Test Operational Menu.

NOTE: A reference list of the ICAO assigned channel numbers is listed in Appendix B.

(5) Data Control Keys

- The Write Protect Key is used to protect a test menu, created by the operator, from being inadvertently overwritten.

- The Delete Key is used to delete each digit of the displayed data field one digit at a time before it is entered into the Test Menu.

 The Escape Key allows the operator to restart at the previous data command or field when a multiple key sequence is in progress. ITEM NAME

DESCRIPTION

(2) Stored Data Keys

These keys are used for maintaining the stored twelve Test Operational Menus. Rather than key-in all the data for the Test Operational Menus every time they are required, the data for the different Test Operational Menus can be stored in the MLS-800 Internal Non-Volatile Memory, and will remain in memory when power is removed for the 10-year life of the battery. The stored and recalled set-ups include all of the non-displayed data words.

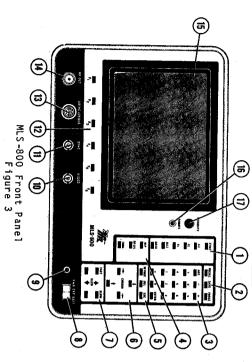
Recall followed by a number (1 through 12) will recall the stored Test Operational Menu and display it on the Test Menu Display (15). This includes all data words.

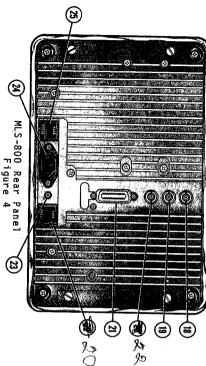
 Save followed by a number (1 through 12) will store the displayed Test Menu in the Internal Non-Volatile Memory.

 Purge followed by a number (1 through 12) will erase the displayed Test Menu in the Internal Non-Volatile Memory.

(3) Data Entry Keys

These keys which are used to enter data into the Test Operational Menu are the Standard Numerical Value Keys 0-9, Polarity Keys (+) and (-), AUX Key, Decimal Key (.) and ENTER Key.


- Selects Auxiliary Data Words on Test Operational Menu.



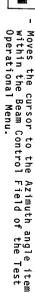
- Instructs processor that a key-in sequence has been completed.

Description of Controls, Connectors and Indicators

- Function Select Keys with Sync Stored Data Keys Data Entry Keys Function Select Keys without Sync Data Control Keys

- Keys
- Data Slew Keys
 PMR/OFF/BATT Switch
 Power indicator Lamp
 Video Output Connector
 Sync Output Connector
 Sync Output Connector
 Special Function Keys
 ARINC 429 BUS 1/0
- RF Out Connector
 Test Menu Display
 Remote Indicator Lamp
 Intensity Control
 750 MHz RF Output Connector
 External Reference Input Connector
 DC Fuse
 DC F B Connector Power Connector

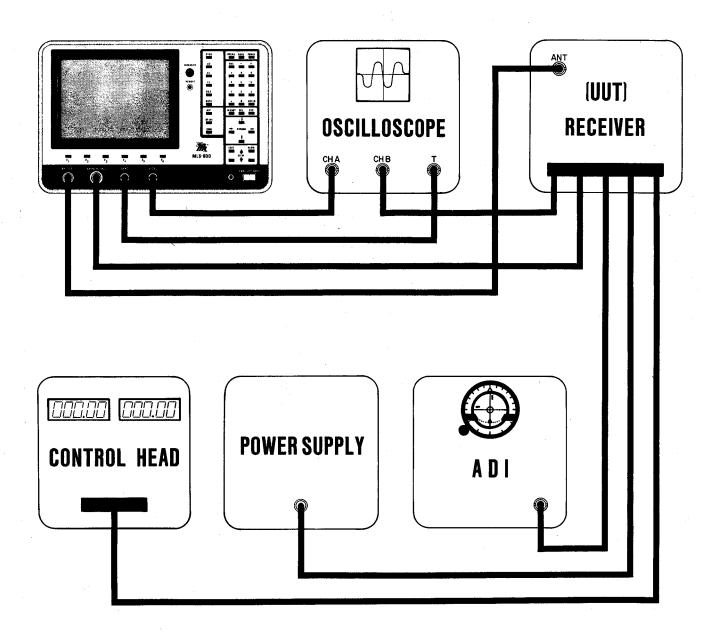
MLS-800 Front Panel


MLS-800 Keyboard es,

ITEM	Display Rotary I I/O Port A.)
NAME	thus elimin (nobs and res (s/Connector
DESCRIPTION	Display, thus eliminating the need for Thumbwheel Switche Rotary Knobs and resolvers for changing data value. (The I/O Ports/Connector Pin-Out Tables are provided in Append A.)

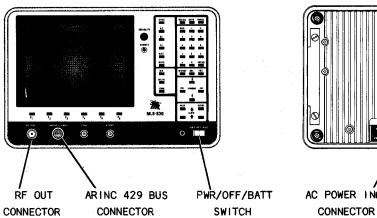
1 Function Select Keys with Sync

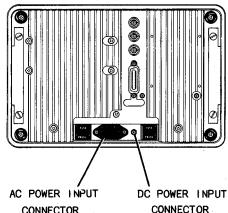
These keys determine the main path beam functions being addressed by the operator and displayed on Test Operational Menu Display (AZ-Azimuth, EL-Elevation, FL-Flare and BAZ-Back Azimuth): functions the


Moves the cursor to the Elevation angle item within the Beam Control Field of the Test Operational Menu.

Moves the cursor to the Flare within the Beam Control Field Operational Menu. angle item of the Test

BAZ Moves the cursor to the Back Azimuth angle item within the Beam Control Field of the Test Operational Menu.


Selects any of the Data Words on the Test Operational Menu. ť be displayed


1-2-2 Page 1/2 Jan 1/86

NOTE: Refer to Manufacturers Manual for Receiver Connector Hookup Points.

MLS-800 System Interface Figure 2

MLS-800 Front and Rear Panels Figure 1

NOTE: The low voltage detect circuit switches test set OFF before performance is affected by low battery voltage.

- B. Installation and Operating Precautions (Refer to Figure 2)
 - (1) To prevent possible damage to the MLS-800, do not apply any signals into the MLS-800 other than those defined in the operating instructions.
 - (2) The following power input and general operating precautions should be observed at all times:

CAUTION: DO NOT OPERATE CRT DISPLAY WITH EXCESSIVE INTENSITY.

CAUTION: DO NOT APPLY RF SOURCE TO THE RF OUT CONNECTOR.

CAUTION: ARINC 429 BUS CONNECTOR CONFORMS TO ELEC-TRICAL SPECIFICATIONS OF ARINC 429 STANDARD.

CAUTION: TO PROVIDE MAXIMUM PROTECTION OF NON-VOLATILE MEMORY CONTENTS, OBSERVE THE FOLLOWING STEPS IN REGARD TO THE PWR/OFF/BATT SWITCH:

- 1. DO NOT RAPIDLY CYCLE POWER ON AND OFF. ALLOW A MINIMUM OF ONE SECOND BETWEEN ON/OFF CYCLE.
- 2. ENSURE POWER IS NOT SHUT OFF DURING DATA ENTRY BEFORE ENTER KEY IS PRESSED, AS THE DATA BEING ENTERED WILL BE LOST.

SECTION 2 - OPERATION

1. Installation

A. General

Preparing the MLS-800 for operation consists of the following steps (Refer to Figure 1):

- (1) Set the MLS-800 into a vertical or horizontal operating position, with cover removed.
- (2) Connect MLS Receiver to RF OUT Connector (Refer to Figure 1).

NOTE: When performing a complete Loop Test on the MLS Receiver, connect the UUT to both the RF OUT Connector (Refer to Figure 1) and ARINC 429 BUS Connector (Refer to Figure 1).

- (3) Furnish electrical power to MLS-800 as follows:
 - (a) External AC Power

Connect furnished AC power cable between 103.5-266 VAC at 45-440 Hz power source and AC Power Connector on rear panel of MLS-800. Place PWR/OFF/BATT Switch to "PWR" position.

(b) External DC Power

Connect furnished DC power cable between external 11-30 VDC power source and DC Power Input Connector on rear panel of MLS-800. Place PWR/OFF/BATT Switch to "PWR" position.

(c) Internal Battery Operation

Place PWR/OFF/BATT Switch to "BATT" position. (This is a momentary spring-loaded switch to "OFF" position.) When operating the test set on battery, an internal timer will interrupt power after approximately ten minutes. Depress PWR/OFF/BATT Switch to "BATT" position to restore power to the test set.

- (4) Sync Capability For:
 - (a) External Monitoring.
 - (b) Designating PFE and CMN Function.
 - (c) Designating Multipath Function.
 - (d) Preamble Parity, Symmetry and Percent Update.
- (5) Simulates all Basic Data words plus Auxiliary Data Words with Parity Selection.
- (6) Full Range of MLS Channels.
- (7) OCI Control for Left, Right and Rear.
- (8) 75 dB AZ to EL Ratio Capability.
- (9) Propeller/Rotor Modulation at 1 to 100 Hz Variable in 1 Hz steps.
- (10) Morse Code Ident. Capability.
- (11) ARINC 429 Receiver with PFE and CMN calculations.
- (12) External RF Reference Input.
- (13) Clearance Pulse Simulation.
- (14) 6.75 Hz Modulation.
- B. Optional Features
 - (1) IEEE-488, 1978 Interface for Remote Control Operation.

SECTION 1 - DESCRIPTION

1. General

The MLS-800 is a microprocessor controlled Ground Station Simulator designed to operate from a test bench or as a ramp tester. Test parameters are selected via 44-position Keyboard and displayed on the Test Menu Display.

There are five menus in the MLS-800 system:

- A. Master Menu (Link to Next Menu)
- B. Test Operational Menu (Test Functions ICAO 1981 and ICAO 1985)
- C. Diagnostic Menu
- D. Special Function Menu
- E. Save Page Directory Menu

2. Functional Capabilities

The MLS-800 incorporates the following features and capabilities:

- A. Standard Features
 - (1) Complete Mainpath Simulation Including:
 - (a) Approach and High Rate Azimuth.
 - (b) Elevation.
 - (c) Flare.
 - (d) Back Azimuth.
 - (2) Complete Multipath Simulation Capability with:
 - (a) Interference Pulses.
 - (b) Selectable Fade Rate Modulation of 0.05, 1, and 1000 Hz.
 - (3) Control Of All Beam Parameters:
 - (a) Angular Position.
 - (b) Beam Amplitude Referenced to the Preamble.
 - (c) Norm and ½ Width Pulse.
 - (d) Selectable Beam Width at 0.5, 1, 2, 3, 4, or 5 Degrees.

<u>Title</u>	Chapter/Section/Subject	<u>Page</u>
Standard Test - ICAO 1981 Data W		51
Standard Test - ICAO 1981 Data W		51
Standard Test - ICAO 1985 Test O	perational 1-2-4	52
Menu w/ ICAO 1985 Data Word #1		
Standard Test - ICAO 1985 Data W	lord #2 1-2-4	53
Standard Test - ICAO 1985 Data W	lord #6 1-2-4	53
Diagnostic Menu	1-2-4	54
Special Function Menu	1-2-4	66
Repacking Procedure	1-4-1	2
GPIB Connector	1-APPENDIX A	2
Filter Definitions	1-APPENDIX C	1/2
429 Terminator	1-APPENDIX F	1/2
50Ω Load	1-APPENDIX F	$\frac{1}{2}$
MLS-800 Approach Azimuth Beam	1-APPENDIX G	1/2
Modulation Data	<u> </u>	-,-

LIST OF ILLUSTRATIONS

<u>Title</u>	Chapter/Section/Subject	<u>Page</u>
Composite MLS-800 Front and Rear Panels MLS-800 Front Panel MLS-800 Front Panel MLS-800 Rear Panel Power Up Self Test Master Menu Save Page Directory Menu Test Operational Menu Fields Prompt Line Menu Label Field Transmission Characteristics Field RCVR 429 BUS Field Out of Coverage Indicator (OCI) Field Clearance Beam Enabled ICAO 1981 Data Word #1 ICAO 1985 Data Word #2 ICAO 1985 Data Word #3 ICAO 1985 Data Word #4 ICAO 1985 Data Word #5 ICAO 1985 Data Word #6 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #8 ICAO 1985 Data Word #1 ICAO 1985 Data Word #1 ICAO 1985 Data Word #1 ICAO 1985 Data Word #1 ICAO 1985 Data Word #2 ICAO 1985 Data Word #4 ICAO 1985 Data Word #4 ICAO 1985 Data Word #6 ICAO 1985 Data Word #6 ICAO 1985 Data Word #6 ICAO 1985 Data Word #6 ICAO 1985 Data Word AD1 (A-1 Formatica ICAO 1985 Data Word AD2 (A-2 Formatica ICAO 1985 Data Word AD3 (A-3 Formatica ICAO 1985 Data Word AD4 (A-4 Formatica ICAO	1-1-1 1-2-1 1-2-1 1-2-2 1-2-2 1-2-2 1-2-4	Page 324/223456789012345678901234544448445678
ICAO Mode Change Menu Standard Test - ICAO 1981 Test Operational Menu w/ ICAO 1981 Data Word #1	1-2-4 1-2-4	4 9 50

<u>Title</u>	Chapter/Section/Subject	<u>Page</u>
SECTION 4 - SHIPPING	1-4	
 MLS-800 Shipping/Repacking A. Shipping Information B. Repacking Procedure 	1-4-1 1-4-1 1-4-1	1 1 1
SECTION 5 - STORAGE	1-5	
1. Storage Precautions	1-5-1	1/2
APPENDIX A - Table of User I/O Ports/Connector Pin-Out Tables	1-APPENDIX A	1
APPENDIX B - MLS Angle, Data and DME/P Channeling Chart	1-APPENDIX B	1
APPENDIX C - PFE and CMN Filter Definitions	1-APPENDIX C	1/2
APPENDIX D - Abbreviations	1-APPENDIX D	1/2
APPENDIX E - MLS-800 Timing Sequences	1-APPENDIX E	. 1
APPENDIX F - Auxiliary Equipment	1-APPENDIX F	1/2
APPENDIX G - MLS-800 Approach Aziumuth Beam Modulation Data	1-APPENDIX G	1/2

<u>Title</u>		Chapter/Section/Subjec	<u>t</u> <u>Page</u>
	Menu Definition (1) Power Up Self Test (2) Master Menu (3) Save Page Directory M (4) Test Operational Menu (5) Diagnostic Menu (6) Special Function Menu	1-2-4 1-2-4 1-2-4	13 13 14 15 16 54 66
	Remote Control (GPIB) Oper (1) GPIB Transactions (2) Status and Service Re Transactions	1-2-4	67 71 72
(Command and Data Structure (1) ASCII Output Commands MLS-800	to 1-2-4	73 73
	(2) ASCII Output Command Format		74
· ((3) Return Data Format (4) Command Groups (5) Reply Identifier MLS-800 Instruction Set (1) Menu Functions (2) Additional Auxiliary (3) Keyboard Functions no 	t 1-2-4	74 75 75 76 76 88 89
	Included in Menu Func (4) Special Functions	1-2-4	90
SECTION 3	3 - SPECIFICATIONS	1-3	
A. F. B. B. B. B. B. B. B. B. B. B. B. B. B.	BOO Specifications RF Signal Generator Functions Mainpath Beam OCI Pulses Multipath Beam Azimuth to Elevation Ratio Propeller Modulation S.75 Hz Modulation Morse Code Oscilloscope Sync Function Update Rate Function Preamble Parity Scanning Beam Time Symmetr System Clock External Reference Input ARINC 429 Data BPIB CRT Power Physical Characteristics Reference Notes	1-3-1 1-3-1 1-3-1 1-3-1 1-3-1 1-3-1	11122233333444445555556

CHAPTER ONE

MLS-800 MICROWAVE LANDING SYSTEM TEST SET

OPERATION MANUAL

TABLE OF CONTENTS

<u>Title</u>	Chapter/Section/Subject	Page
Record of Revisions List of Effective Pages Introduction Table of Contents List of Illustrations	1-List of Effective Pages 1-Introduction 1-Table of Contents 1-List of Illustrations	1/2 1/2 1 1
SECTION 1 - DESCRIPTION	1-1	
 General Functional Capabilities Composite 	1-1-1 1-1-1 1-1-1	1 1 3/4
SECTION 2 - OPERATION	1-2	
 Installation General Installation and Operation 	1-2-1 1-2-1 1-2-1	1 1 1
Precautions 2. Description of Controls, Connectors and Indicators	1-2-2	1/2
A. MLS-800 Front Panel B. MLS-800 Rear Panel 3. MLS-800 Performance Evaluation	1-2-2 1-2-2 1-2-3	1/2 7/8 1
A. General 4. General Operating Procedures	1-2-3 1-2-4 1-2-4	1/2 1 1
(1) Recall (2) Save	1-2-4 1-2-4 1-2-4	1 2 4
(3) Purge (4) Write Protect (5) Delete (6) Escape (7) Sync	1-2-4 1-2-4 1-2-4 1-2-4 1-2-4	4 5 6 7
B. Operational Display Menus C. Operator Intervention		12 12

INTRODUCTION - MLS-800 MICROWAVE LANDING SYSTEM TEST SET

This manual contains instructions for the MLS-800 for testing and calibrating MLS (Microwave Landing Systems Equipment). It is strongly recommended that the operator be thoroughly familiar with Section 2 of this manual before attempting to perform any operating procedures. It is also recommended the operator be familiar with the following:

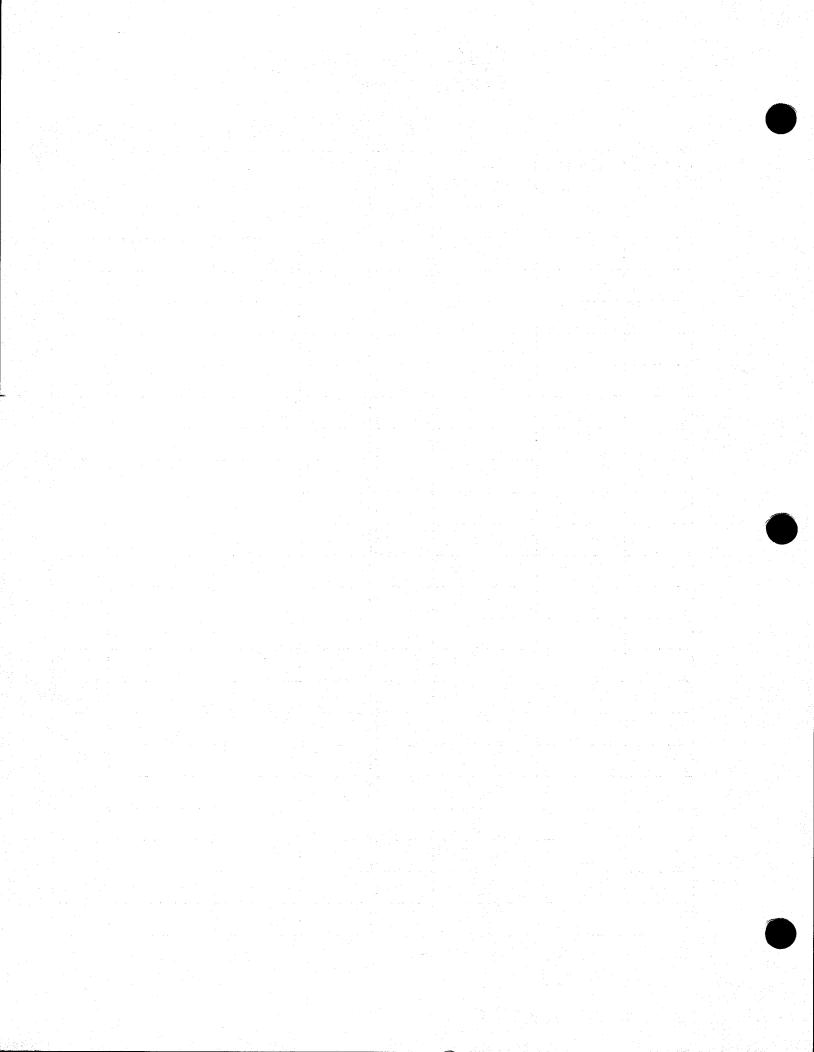
- 1. Minimum Operational Performance Standards for MLS Airborne Receiving Equipment; Document No. RTCA/DO-177, July 1981.
- 2. MLS Interoperability and Performance Requirements; FAA-STD-022b, Oct 27, 1983.
- 3. International Civil Aviation Organization (ICAO) Document International Standards and Recommended Practices (SARPS) as contained in Aeronautical Telecommunications, Annex 10, both 1981 and 1985 Standards.
- 4. ARINC Spec 429-6 Mark 33 Digital Information Transfer System (DITS).

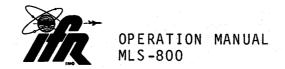
This manual is divided into five sections as follows:

Section 1 - DESCRIPTION (physical and mechanical description of test set and a list of features.)

Section 2 - OPERATION (installation instructions; description of controls, connectors and indicators; operation performance check; general operating procedures; and GPIB operating procedures.)

Section 3 - SPECIFICATIONS


Section 4 - SHIPPING


Section 5 - STORAGE (for extended periods)

LIST OF EFFECTIVE PAGES

Chapter/Section/Subject	<u>Page</u>	Date
Title Page Copyright Page Warning Page Caution Page Record of Revisions Page 1-List of Effective Pages 1-Introduction 1-Table of Contents 1-List of Illustrations 1-1-1 1-2-1 1-2-2 1-2-3 1-2-4 1-3-1 1-4-1 1-5-1 1-APPENDIX A 1-APPENDIX B 1-APPENDIX C 1-APPENDIX D 1-APPENDIX E	1/2 1/2 1 thru 3/4 1 thru 2 1 thru 2 1 thru 2 1 thru 7/8 1 thru 3/4 1 thru 92 1 thru 6 1 thru 2 1/2 1 thru 2 1/2 1 thru 2 1/2 1 thru 8	Jan 1/86 Jan 1/86
1-APPENDIX F 1-APPENDIX G	1/2 1/2	Jan 1/86 Jan 1/86

RECORD OF REVISIONS

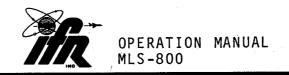
REV NO.	ISSUE DATE	DATE INSERTED	ВҮ	REV NO.	ISSUE DATE	DATE INSERTED	ВҮ
	· .		: 1				
					:		
·							
		- · · ·					
· -					general de la companya de la company		

CAUTION:

INTEGRATED CIRCUITS AND SOLID STATE DEVICES SUCH AS MOS FET'S, ESPECIALLY CMOS TYPES, ARE SUSCEPTIBLE TO DAMAGE BY ELECTROSTATIC DISCHARGES RECEIVED FROM IMPROPER HANDLING, THE USE OF UNGROUNDED TOOLS, AND IMPROPER STORAGE AND PACKAGING. ANY MAINTENANCE TO THIS UNIT MUST BE PERFORMED WITH THE FOLLOWING PRECAUTIONS:

- 1. BEFORE USE IN A CIRCUIT, KEEP ALL LEADS SHORTED TOGETHER EITHER BY THE USE OF VENDOR-SUPPLIED SHORTING SPRINGS OR BY INSERTING LEADS INTO A CONDUCTIVE MATERIAL.
- 2. WHEN REMOVING DEVICES FROM THEIR CONTAINERS, GROUND THE HAND BEING USED WITH A CONDUCTIVE WRISTBAND.
- 3. TIPS OF SOLDERING IRONS AND/OR ANY TOOLS USED MUST BE GROUNDED.
- 4. DEVICES MUST NEVER BE INSERTED INTO NOR REMOVED FROM CIRCUITS WITH POWER ON.
- 5. PC BOARD, WHEN TAKEN OUT OF THE SET, MUST BE LAID ON A GROUNDED CONDUCTIVE MAT OR STORED IN A CONDUCTIVE STORAGE BAG.

NOTE: Remove any built-in power source, such as a battery, before laying PC Boards on conductive mat or storing in conductive bag.


6. PC BOARDS, IF BEING SHIPPED TO THE FACTORY FOR REPAIR, MUST BE PACKAGED IN A CON-DUCTIVE BAG AND PLACED IN A WELL-CUSHIONED SHIPPING BOX.

CAUTION:

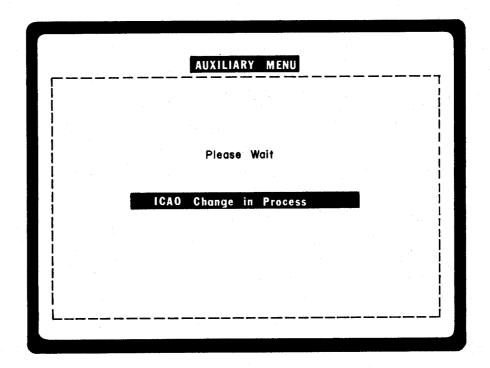
THE USE OF SIGNAL GENERATORS FOR MAINTENANCE AND OTHER ACTIVITIES CAN BE A SOURCE OF ELECTROMAGNETIC INTERFERENCE TO AVIATION RECEIVERS, WHICH CAN CAUSE DISRUPTION AND INTERFERENCE TO AERONAUTICAL SERVICE OUT TO A DISTANCE OF SEVERAL MILES.

CAUTION:

USERS OF THIS EQUIPMENT SHOULD SCRUTINIZE ANY OPERATION WHICH RESULTS IN RADIATION OF A SIGNAL (DIRECTLY OR INDIRECTLY) AND ENSURE COMPLIANCE WITH INSTRUCTIONS OUTLINED IN FAA CIRCULAR AC 170-6C, DATED FEBRUARY 19, 1981.

WARNING:

HIGH VOLTAGE EQUIPMENT


THIS EQUIPMENT CONTAINS CERTAIN CIRCUITS AND/OR COMPONENTS OF EXTREMELY HIGH VOLTAGE POTENTIALS, CAPABLE OF CAUSING SERIOUS BODILY INJURY OR DEATH. WHEN PERFORMING ANY OF THE PROCEDURES CONTAINED IN THIS MANUAL, HEED ALL APPLICABLE SAFETY PRECAUTIONS.

RESCUE OF SHOCK VICTIMS

- 1. DO NOT ATTEMPT TO PULL OR GRAB THE VICTIM
- 2. IF POSSIBLE. TURN OFF THE ELECTRICAL POWER.
- 3. IF YOU CANNOT TURN OFF ELECTRICAL POWER, PUSH, PULL OR LIFT THE VICTIM TO SAFETY USING A WOODEN POLE, A ROPE OR SOME OTHER DRY INSULATING MATERIAL.

FIRST AID

- 1. AS SOON AS VICTIM IS FREE OF CONTACT WITH SOURCE OF ELECTRICAL SHOCK, MOVE VICTIM A SHORT DISTANCE AWAY FROM SHOCK HAZARD.
- 2. SEND FOR DOCTOR AND/OR AMBULANCE.
- 3. KEEP VICTIM WARM, QUIET AND FLAT ON HIS/HER BACK.
- 4. IF BREATHING HAS STOPPED, ADMINISTER ARTIFICIAL RESUSCITATION. STOP ALL SERIOUS BLEEDING.

ICAO Mode Change Menu Figure 41

6 MASTER - Displays the Master Menu.

(i) Standard Test Conditions per RTCA/DO-177 -ICAO 1981 Test Operational Menu (Refer to Figures 42 thru 44)

The following Menu includes the standard test signals used to test the MLS equipment. The main parameters involved in this test are:

```
: set to 600 (5061.000 MHz)
Channel
RF Level
           : set to -70 dBm
OCI
            : set to -4 dB
AZ angle
           : set to 0.0°
         : set to 3.0°
EL angle
Scanning Beam Level : set to 6 dB
                         set to 1 ^{\circ}
Scanning Beam Width :
AZ to Threshold distance
                                 set to 3000m
                                 (Figure 42) set to ±60°
Approach AZ Prop. Cov. Limit:
                                 (Figure 42)
                                 set to 3.0°
Minimum glide path
                                 (Figure 43)
Ground Station Identifier
                                 set to "IFR"
                                 (Figure 44)
```

hannel: 600			
Z Ratio: O	RF Level: -70		lorm AZ
Parity : E E	Ident : OFF Update : 100	SYNC ON Symmetry : O	ì
.75 Hz : OFF	Fade Rate: OFF	Prop Mod : 0	
PFE: SDI		BUS FL =	
)OFF EL =-		
BEAM		•	
—— Cond——Angle——	Level Shape	-Width-i-RTI	_T——RR
Z : ON 00.00		-4 -	4 -4
L: ON 03.00 BAZ: ON 00.00	06 Norm 06 Norm	4 _	4 -4
L : OFF 00.00			
IP : OFF 00.00		Left dB	:
1234-	-5678	-AUX, Right dB	
ATA ON ON ON ON			
	Data # 1		
Z to Threshold dis			rity: E E
pproach AZ Proport	ional Coverage Lim		ear : O
pproach AZ Proport			are : 0

Standard Test - ICAO 1981 Test Operational Menu w/ Data Word #1 Figure 42

Ground Equipment Status: 0 0 Parity : E E
BAZ Next : YES Min Glide Path: 3.0
DME Status : 0 0 Spare: 0 0 0 0 0 0

Standard Test - ICAO 1981 Data Word #2 Figure 43

Data 🕖 6

Ground Station Identifier:

FR

Parity: E E

Standard Test - ICAO 1981 Data Word #6 Figure 44 (j) Standard Test Conditions per RTCA/DO-177 -ICAO 1985 Test Operational Menu (Refer to Figures 45 thru 47)

The following Menu includes the standard test signals used to test the MLS equipment. The main parameters involved in this test are:

Channe 1 : set to 600 (5061.000 MHz) RF Level : set to -70 dBm : set to -4 dB OCI AZ angle : set to 0.0° : set to 3.0° EL angle Scanning Beam Level : set to 6 dB Scanning Beam Width : set to 1° AZ to Threshold distance set to 3000m (Figure 45) Approach AZ Prop. Cov. Limit: set to ±60° (Figure 45) Minimum glide path set to 3.0° (Figure 46) set to "IFR" Ground Station Identifier (Figure 47)

Channel : 500 AZ Ratio : 0		el:-122 :OFF	Mode : Norm A
P Parity: E E	Update	:100	Symmetry : 0
6.75 Hz: OFF			
PFE:		RCVR 429	FL = +08.000 De
CMN:	EL = +1	0.000 Deg	BAZ= +06.000 De
	MC O N		
	gie		VI&th-
EL : ON 03	00 06	Norm	-
BAZ: OFF OC	0.00 06		-10 -10 -
FL:OFF 00 MP:OFF		Norm Clear -	> Left dB: + C
			3-AD4 Right dB: - 0
			ON Angle +-:
		ita = L	
AZ to Threshold			Parity : E E
AZ Prop. Cov. L			Cir. Sig.: O
AZ Prop. Cov. L	imit Pos : 60		Spare : O

Standard Test - ICAO 1985 Test Operational Menu w/ Data Word #1 Figure 45

Min. Glide Path: 03.0 BAZ Status: I Parity: E E
DME Status: 1 Spare: 00000

Standard Test - ICAO 1985 Data Word #2 Figure 46

Ground Station ID: IFR Parity: E E

Standard Test - ICAO 1985 Data Word #6 Figure 47

(5) Diagnostic Menu (Refer to Figure 48)

Modulation: Use SLEW to select CW, O Volts, AZ, or TRI MLS-800 Diagnostics CRT Alignment Test: OFF RF Channel Test: OFF 429 Loop Test : OFF CYCLE: **ERROR:** Fade Rate: OFF Prop Mod: OFF 6.75 Hz: OFF AZ Angle ----RF Level: -017 Channel: 600 Main Path Mod: OFF Multipath Mod: OFF Mod Level: 00 DPSK: OFF Mod Level: 00 14 dB : OFF 75 dB: OFF 14 dB : OFF 75 dB: OFF MLSTEST ALT MM SYS RST MASTER

Diagnostic Menu Figure 48

The Diagnostic Menu is designed to aid testing and alignment of the MLS-800. Test operations which cannot be accomplished in the Test Operational Menu can be performed in the Diagnostic Menu. The Diagnostic Menu consists of four Test Function Fields.

Only one test in the upper portion of the Diagnostic Menu may be active at a time. For 429 Loop Test, only one of the two channels may be under test at a time. 429 Loop Test results are displayed to the right of the 429 Loop Test field. For Beam Modulation tests (Main Path and Multipath), either test or both may be running in any of the available modes, and may run during any tests in the top portion. At the completion of the RF Channel test, the channel will be restored to the value indicated in the Beam Modulation Test Channel field.

Tests from the upper portion which are active will be displayed in inverse video. To start a test from the upper portion, move cursor to and slew the Test's field to the desired test condition and press ENTER. All commands must use the ENTER Key to maintain desired value selected with the SLEW Key. There are three ways to halt a test from the top portion:

Slew the test's field to OFF and press ENTER.

Start up another test in the upper portion.

Press one of the function keys under the menu to exit diagnostics.

Only one of the top three fields under the Beam Modulation test portion may be active at a time (Fade Rate, Prop Mod, 6.75 Hz). If one is activated, all other fields which are active will be disabled. If Main Path Beam is not OFF, SYNC will be applied to the main beam. Non-Azimuth Multipath beams should be run with the Main Path beam OFF. Fields related to each Beam Path will be displayed in inverse video if active and relevant to the Modulation type.

The cursor may be moved around while certain tests are executing (RF Channel, 429 Loop, Main Path and Multipath). Each of the test fields may be edited, however the response to the editing inputs slower.

(a) Diagnostic Functions

The following functions in the Diagnostic Menu allow the operator to set conditions for the desired tests, run the desired tests, and display other menus contained in the MLS-800:

- $\underline{1}$ CRT Alignment Test Refer to D.(5)(b).
- 2 RF Channel Test Refer to D.(5)(b).
- 3 429 Loop Test Refer to D.(5)(b).
- 4 CYCLE Displays the cycle count for the 429 Loop Test in progress. (Display only.)
- 5 ERROR Displays the error count for the 429 Loop Test in progress. (Display only.)

<u>6</u>	Fade	Rate	Displays the simulation of ground reflections causing modulation level to oscillate (1 kHz, 1 Hz,
			0.05 Hz or OFF). (Applied to Multipath Modulation only.)

- Prop Mod Displays propeller or rotor modulation simulation (0 to 199 Hz in 1 Hz steps or OFF). (Applied to Main Path Modulation only.)
- 8 6.75 Hz Displays the condition (ON/OFF) required for the Signal Level Variation Test. (Applied to Main Path Modulation only).
- 9 AZ Angle Displays the Azimuth angle ± 0.1° when modulation level is +6 dB to +13 dB (Display only). (Active on Main Path Modulation test only.)
- 10 RF Level Displays the RF Output Level, selectable from -17 to -122 dBm.
 Used to set RF Levels during the CW test for accurate measurement.
- 11 Channel Displays the MLS-800 Channel, selectable from 500-699 (Active on Main Path and Multipath Modulation tests only).
- 12 Modulation Displays the Modulation Function selectable as one of the following:
 - a OFF Beam Modulation Output is O Volts. 75 dB Pad and 14 dB Pad are enabled.
 - \underline{b} O VOLTS Beam Modulation Output is O Volts.
 - C CW Outputs a continuous Preamble signal from the Beam Modulation Synthesizer.
 - d +60 AZ Normal AZ signal at +60 Degrees with SYNC AZ enabled. Used to verify TO/FRO pulse operation.
 - e -60 AZ Normal AZ signal at -60 Degrees with SYNC AZ enabled. Used to verify TO/FRO pulse operation.

1-2-4 Page 56 Aug 15/86

OPERATION MANUAL MLS-800

- f 0 AZ Normal AZ signal at 0 Degrees with SYNC AZ enabled. Used to
 - verify TO/FRO pulse operation.
- g 1000 TRI 1000 Hz triangular wave ranging from -14 dB to +13 dB Output from the Beam Modulation

Synthesizer. Used to verify modulation linearity.

- h 500 TRI
- 500 Hz triangular wave ranging from -14 dB to +13 dB Output from the Beam Modulation Synthesizer. Used to verify modulation linearity.
- <u>i</u> 250 TRI
- 250 Hz triangular wave ranging from -14 dB to +13 dB Output from the Beam Modulation Synthesizer. Used to verify modulation linearity.
- $\frac{13}{2}$ Mod Level Displays the Beam Modulation Level, selectable from -14 dB to +13 dB.
- 14 DPSK
- Displays the DPSK condition, selectable as ON, OFF or CONT. Used to cycle the DPSK level during the CW test for accurate measurement of the 180 Degree phase shift requirement for transmitting digital data. The DPSK can be cycled at a continuous 15.625 kHz rate which is the specified MLS data rate (not active for Main Path AZ or OFF Beam Modulation).
- 15 14 dB
- Displays the 14 dB Pad condition, selectable as ON or OFF. Used to cycle the 14 dB Pad, normally used to attenuate beam side lobes, during the CW test for accurate measurement (not active for AZ or OFF Beam Modulation).

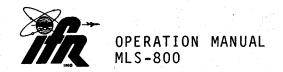
16 75 dB

- Displays the 75 dB Pad condition, selectable as ON or OFF. Used to cycle the 75 dB Pad, normally used to disable (OFF) a function (and in the case of the Main Path Beam, for the 75 dB AZ Ratio test), during the CW test for accurate measurement (not active for AZ or OFF Beam Modulation). Used to attenuate combined Main Path and Multipath signals or Multipath signal only.

17 MLSTEST - Displays the Test Operational Menu.

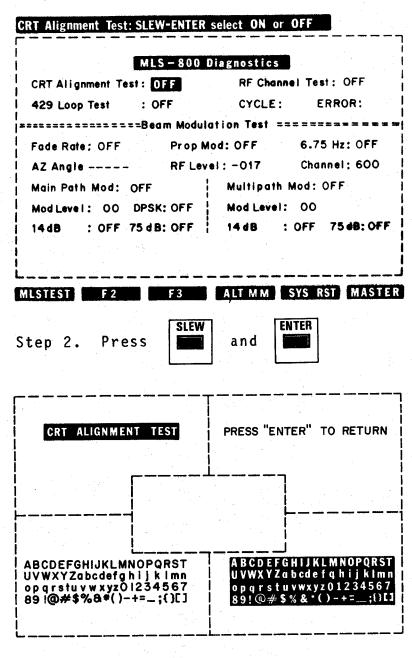
18 F2 - Not Used.

<u>19</u> F3 - Not Used.


20 ALT MM - Swaps preset test conditions (Beam Mod, Mod Level, 14 dB Pad) between Mainpath and Multipath modulations.

21 SYS RESET - Resets the system to the Power-Up state.

 $\underline{22}$ MASTER - Displays the Master Menu.


THIS PAGE INTENTIONALLY LEFT BLANK.

(b) Operating Instructions

Example #1 CRT ALIGNMENT TEST

Step 1. Present Menu

Step 3. Press

Example #2 RF CHANNEL TEST

Step 1. Present Menu

RF Channel Test: SLEW-ENTER select ON or OFF

: OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

CYCLE:

429 Loop Test

ERROR:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: OO DPSK: OFF

Mod Level: 00

: OFF 75 dB: OFF 14 dB

: OFF 75 48: OFF

MLSTEST

14 dB

ALT MM SYS RST MASTER

Step 2. Press

and

RF Channel Test: SLEW-ENTER select ON or OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test : ON

429 Loop Test

: OFF

CYCLE:

Prop Mod: OFF

Fade Rate: OFF AZ Angle ----

6.75 Hz: OFF

Main Path Mod: OFF

RF Level: -017

Channel: 600

Multipath Mod: OFF

Mod Level: 00 DPSK: OFF

Mod Level: 00

14dB : OFF 75dB: OFF 14dB : OFF 75dB: OFF

MLSTEST F2 F3 ALT MM SYS RST MASTER

NOTE:

RF Synthesizer is stepped from Channel 500 to 699 and back in increments of 10. Cycle repeats at approximately 1.5 seconds.

Step 3. Press

and

ENTER

Example #3 429 LOOP TEST CHANNEL #1

Step 1. Present Menu

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: 0 F F

CYCLE: ERROR:

Fade Rate: OFF

Prop Mod: OFF

AZ Angle ----

RF Level: -017

Chennel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: 00 DPSK: OFF | Mod Level: 00

14dB : OFF 75dB: OFF 14dB : OFF 75dB: OFF

F2 F3 ALT MM SYS RST MASTER MLSTEST

Step 2. Press

and

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS - 800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: CHAN #1

CYCLE:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: OO DPSK: OFF !

Mod Level: 00

: OFF 75 dB: OFF 14 dB

: OFF 75 dB: OFF

Insert 429 test adaptor and ENTER; Press ESC to ignore

MLSTEST F2 F3 ALT MM SYS RST MASTER

Step 3. Press

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: CHAN #1

CYCLE:

========Beam Modulation Test =======

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Main Path Mod: OFF

Channel: 600

Mod Level: 00 DPSK: OFF

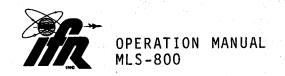
Multipath Mod: OFF Mod Level: 00

: OFF 75 dB: OFF

14 dB

: OFF 75 dB: OFF

MLSTEST


ALT MM SYS RST MASTER

Press Step 4.

twice.

Press Step 5.

Upon completion of desired test cycles, NOTE: the CYCLE and ERROR counters will restart when test is reinstated.

Example #4 429 LOOP TEST CHANNEL #2

Step 1. Present Menu

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: OFF CYCLE:

Fade Rate: OFF Prop Mod: OFF 6.75 Hz: OFF

AZ Angle ----

RF Level: -017 Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: 00 DPSK: OFF

Mod Level: 00

14dB : OFF 75dB: OFF 14dB : OFF 75dB: OFF

MLSTEST F 2

F3 ALT MM SYS RST MASTER

Step 2. Press

and

ENTER

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: CHAN #2 CYCLE:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ---- RF Level: -017 Channel: 600

Main Path Mod: OFF

| Multipath Mod: OFF

Mod Level: 00

Mod Level: 00 DPSK: OFF

: OFF 75 dB: OFF 14 dB : OFF 75 dB: OFF

Insert 429 test adaptor and ENTER; Press ESC to ignore

MLSTEST

ALT MM SYS RST MASTER

Step 3. Press

429 Loop Test: SLEW-ENTER select Channel 1, 2, OFF

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test : CHAN #2

CYCLE:

ERROR:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: 00 DPSK: OFF

14dB : OFF 75dB: OFF | 14dB

Mod Level: 00

: OFF 75 48: OFF

ALT MM SYS RST MASTER

Step 4. Press

and

Upon completion of desired test cycles, NOTE: the CYCLE and ERROR counters will restart when test is reinstated.

Example #5 MAINPATH MODULATION TEST Step 1. Present Menu

Modulation: Use SLEW to select CW, O Volts, AZ, or TRI

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: OFF

CYCLE:

ERROR:

: OFF 75 dB: OFF

Prop Mod: OFF

6.75 Hz: OFF

Fade Rate: OFF AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: OO DPSK: OFF

Mod Level: 00

14 dB : OFF 75 dB: OFF

F3 ALT MM SYS RST MASTER

Step 2. Press

to desired value.

Modulation: Use SLEW to select CW, O Volts, AZ, or TRI

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: OFF

CYCLE:

ERROR:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: 0 Volts

Multipath Mod: OFF

Mod Level: 00 DPSK: OFF

Mod Level: 00

: OFF 75 dB: OFF 14 dB : OFF 75 dB: OFF

F2 F3 ALT MM SYS RST MASTER

Step 3. Adjust Functions

Step 4. Press

to OFF position on

Main Path Modulation Test

Example #6 MULTIPATH MODULATION TEST

Step 1. Present Menu

Modulation: Use SLEW to select CW, O Volts, AZ, or TRI

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

429 Loop Test

: OFF

CYCLE:

Fade Rate: OFF

Prop Mod: OFF

6.75 Hz: OFF

AZ Angle ----

RF Level: -017

Channel: 600

Main Path Mod: OFF

Multipath Mod: OFF

Mod Level: OO DPSK: OFF

Mod Level: 00

14dB : OFF 75dB: OFF | 14dB : OFF 75dB: OFF

F3 ALT MM SYS RST MASTER

Press

to desired value.

Modulation: Use SLEW to select CW, O Volts, AZ, or TRI

MLS-800 Diagnostics

CRT Alignment Test: OFF

RF Channel Test: OFF

Multipath Mod: 0 Volts

429 Loop Test : OFF

CYCLE:

ERROR:

Fade Rate: OFF Prop Mod: OFF 6.75 Hz: OFF

AZ Angle ----

Main Path Mod: OFF

RF Level: -017

Channel: 600

Mod Level: 00 DPSK: OFF

Mod Level: 00

14dB : OFF 75dB: OFF 14dB : OFF 75dB: OFF

MLSTEST F2 F3 ALT MM SYS RST MASTER


Step 3. Adjust Functions

Step 4. Press

to OFF position on

Multipath Modulation Test.

(6) Special Function Menu (Refer to Figure 49)

GPIB Address: Select 0 to 31 SPECIAL FUNCTION MENU SPECIAL FUNCTION SELECT GPIB Address: 04 Default Page : 00 MLS Cycle : Fixed PFE/CMN Test: Inactive External Sync : Inactive (SELECT FUNCTION BELOW) MLSTEST SPFUN SAVE DIR DIAG MASTER

Special Function Menu Figure 49

- (a) GPIB Address Displays the optional GPIB Address selectable from 0 to 31 using the Keyboard Number Keys or Slew. The GPIB Address is stored in Non-Volatile Memory.
- (b) Default Page Displays the number of the page from the Save Directory that will be recalled on power up. If it is 0 or no page is stored at this memory address, then the standard test condition for ICAO 1985 is the default page and MASTER menu is displayed as a default menu.
- (c) MLS Cycle The cycle time can be fixed or can vary ±5 mSec in a random fashion to avoid interference problems.

 The cycle length is always fixed during Diagnostics operation.

(d) PFE/CMN Test - Displays the maximum value for PFE and the 95% value for CMN every 10 seconds or 40 seconds when Multipath is active. Values are

displayed in the PFE and CMN data fields in inverse video to distinguish them from the PFE and CMN data.

- (e) External Sync This allows the MLS-800 to be synced with another MLS-800.
- E. Remote Control (GPIB) Operation

Remote communications with the MLS-800 is provided by use of the General Purpose Interface Bus (GPIB) which conforms to the latest IEEE-Standard-488-1978. The test set will perform to the following IEEE-488-1978 Subsets: SH1, AH1, T6, TEØ, LA, LEØ, SR1, RL2, PPØ, DC1, DT1 and CØ. These subsets mean the MLS-800 has the following capabilities using ASCII encoded character strings:

Complete Source and Accepter Handshake

Talker with Serial Poll

Listener

Service Request

Remote/Local (No local lockout capability)

Device Clear

Device Trigger

The GPIB Address is set by the MLS-800 Front Panel Keyboard Entry Keys in the Special Function Menu.

All communication with the MLS-800 over the GPIB is implemented with ASCII encoded character strings. Invalid or improperly formatted characters are discarded and an error status bit will be set. The exceptions to this rule are the IEEE-488 defined BUS messages listed in Table 5-1. Any of these messages will cause an immediate response within the MLS-800. The ASCII String Commands are stored in a 128 Byte Buffer until receipt of a Carriage Return, Line Feed, Null Character or an "END", "IDY" or "GET" message. At this time, all commands will be executed and measurements made.

MNE MONIC MESSAGE	ASCII CODE (HEX)	IEEE-488 INSTRUCTION
ATN	bus signal line	ATTENTION
DAB	ØØ-7F	Data Byte
DAC	bus signal line	Data Accepted
DAV	bus signal line	Data Valid
DCL	14	Device Clear
END or EOI	bus signal line	End
GET	Ø 8	Group execute trigger
GTL	Ø 1	Go to Local
IDY	bus signal line	Identify
IFC	bus signal line	Interface clear
MLA	2 Ø- 3F	My listen address
MTA	4Ø-5F	My talk address
REN	bus signal line	Remote enable
RFD	bus signal line	Ready for data
SPD	19	Serial poll disable
SPE	18	Serial poll enable
SRQ	bus signal line	Service Request
STB	ØØ-FF	Status Byte
UNL	3F	Unlisten
UNT	5 F	Untalk

Refer to the IEEE-Standard-488-1978 for further explanation.

IEEE-488-1978 BUS Messages Table 1

MNE MONIC MESSAGE	DEFINITION
ATN	The MLS-800 GPIB I/O device responds immediately to process the incoming GPIB controller commands.
DAB	The MLS-800 microprocessor responds by status testing of the GPIB I/O device to accept the data byte.
DAC	The MLS-800 GPIB I/O device responds immediately to signal the talker that it has accepted the data byte.
DAV	The MLS-800 GPIB I/O device responds immediately to signal the interceptor that it has put valid data on the BUS.
DCL	The MLS-800 processor responds to reset the GPIB Interface to its initialized state.
END or EOI	The MLS-800 responds to terminate the command input from the source and begin processing the commands available up to the last valid delimiter.
GET	The MLS-800 responds to terminate any further inputs and executes the commands available up to the last available delimiter.
GTL	The MLS-800 processor responds to remove itself from control over the test set, therefore returning control over to the front panel.
IDY	Same as "END" or "EOI".
IFC	The MLS-800 processor responds by returning to local mode.
LLO	No response to this message.
MLA	The MLS-800 GPIB I/O device responds immediately by comparing its address with the listen address given. If the two are the same, it instructs the processor to listen.

MLS-800 GPIB Message Interface Definitions Table 2

MNEMONIC MESSAGE	DEFINITION
МТА	The MLS-800 GPIB I/O device compares its address with the talk address given. If the two are the same, it instructs the processor to talk.
REN	The MLS-800 processor responds from the interface to put the test set into remote, which disables front panel operation.
RFD	The MLS-800 GPIB I/O device signals the source that it is ready for data to be transmitted on the bus.
SPD	The MLS-800 GPIB I/O device terminates the service request operation by disabling the serial poll.
SPE	The MLS-800 GPIB I/O device places the status byte on the BUS addressed to talk.
SRQ	The MLS-800 processor instructs the interface to signal the controller that servicing is desired. (This is done under MLS-800 software control.)
STB	The MLS-800 GPIB I/O device responds immediately after the SPE and MTA messages by placing the status byte on the BUS.
UNL	The MLS-800 GPIB I/O device and the processor responds to unlisten the test set.
UNT	The MLS-800 GPIB I/O device and the processor responds to untalk the test set.

MLS-800 GPIB Message Interface Definitions Table 2 (Cont.)

(1) GPIB Transactions

Two examples of GPIB transactions showing the ASCII Character String to be transmitted followed by the necessary BUS operations to complete the transactions are shown below. These examples were generated and executed using a GPIB controller that uses an ANSI Standard Basic Interpreter with enhancements allowing direct communication over GPIB using special GPIB interface hardware. In the examples, the ASCII Character String to be transmitted is shown first, followed by the bus operations required to complete the transaction.

- (a) Example #1 Instruct the MLS-800 to set the Channel to 699.
 - ASCII String: "CHNL = 699" (Followed by carriage return and line feed.)
 - BUS Transaction: UNT, UNL, MTA, DAB "C", DAB
 "H", DAB "N", DAB "L", DAB "=", DAB "6", DAB
 "9", DAB "9", DAB CR, DAB LF.
- (b) Example #2 Instruct the MLS-800 to return the RF Level which is -100dB.
 - 1 ASCII String: "RFLVL?"
 - 2 BUS Transaction:
 - a Output Cycle UNT, UNL, MLA, MTA, DAB "R", DAB "F", DAB "L", DAB "V", DAB "L", DAB "?", DAB CR, DAB LF.
 - b Input Cycle UNT, UNL, MLA, MTA, DAB "-", DAB "1", DAB "Ø", DAB "Ø", DAB CR, DAB LF.

(2) Status and Service Request Transactions

The MLS-800 has the capability to trigger a service request, based on one to six trigger conditions which can be set by the user with the "SRQ=" command. After the MLS-800 is placed in remote operation mode, it may be interrogated for the one byte status information. If an internal error or status condition becomes true and the matching trigger bit of the SRQ trigger byte has been set, Bit 6 will also be set. Bit 6 is generally used as the service request bit, signaling the GPIB controller that the MLS-800 desires servicing. For an explanation of the other bits returned through Serial Poll, refer to Table 3.

STATUS BIT NO.	STATE	DEFINITION
Ø	Ø = Local 1 = Remote	Local/Remote Status
1	Not Defined	Not Defined
2	Ø = No Error 1 = Error	System Error Status
3	Ø = No Error 1 = Error	429 Comm Error Status
4	Not Defined	Not Defined
5	Not Defined	Not Defined
6	Ø = Not Triggered 1 = Triggered	SRQ Trigger Status
7	Not Defined	Not Defined

Table 3 Status Bit Definition

For a description of the System Error Status, the GPIB command "ERRM?" can be executed. The Warning or Error message is cleared when "ERRM?" is executed. The 429 Comm Error Status information is returned by the "STAT429?" Command.

F. Command and Data Structure

All MLS-800 functional commands and data information are transferred over the GPIB as uppercase ASCII Alphanumeric Character Strings and are designed to replace the front panel controls.

(1) ASCII Output Commands to the MLS-800

All input commands sent to the MLS-800 are placed on an Internal Stack that will accommodate up to 128 bytes of data. Command Strings may be packed together, but the individual commands must be separated by delimiters. The delimiters are:

ASCII COLON ":" or SLASH "/"

ASCII PERIOD "."

ASCII QUESTION MARK "?"

NOTE: The Colon (":") or Slash ("/") are general delimiters and may be used after the Period or Question Mark. Care must be exercised in using the Period or Question Mark at the end of a command as they may change the interpretation of that command. Upon receipt of the Slash ("/"), the command preceding will be executed immediately.

(a) When the MLS is the assigned listener, the following ASCII Characters will terminate the output command or series of commands:

ASCII Carriage Return (ØD) - CR

ASCII Line Feed (ØA) - LF

NULL Character (\emptyset) - NL

(b) When the MLS-800 is the assigned talker, the EOI line will be set when the specified termination sequence is sent.

NOTE: The command "TERM = XXXX" specifies the termination sequence.

(2) ASCII Output Command Data Format

All spaces will be ignored. Below are some examples of commands which are valid.

Example #1: "MODE = NORMAZ: MODE?"

Example #2: "UPDATE?"

Example #3: "RFLVL = -100:"

NOTE: If no CR, LF, NULL, GET, SLASH or EOI is included, then the line may be continued and the commands will not be executed until one of above is received.

Maximum command string length including spaces and delimiters is 128 characters. If the command string exceeds 128 characters, everything up to the most recent delimiter will be accepted and the rest ignored. Commands ending with an ASCII Question Mark ("?") would normally require the operator to input using an ASCII String input command after issuing the output command.

Example #1:

Command: "CHNL?UPDATE?RID=ON:RFLVL"

Response: "699:100:RFLVL = 100?"

The above commands set the Reply Identifier Flag which caused the command label following "RID=ON" to be attached to the response.

(3) Return Data Format

The returned data format convention is similar to the Output Command Data Format in that all returns will be packed together and separated by ASCII Colon (":") delimiters. The number of responses returned is determined by the number of commands transferred in one block. If the number of responses required causes the internal response buffer to overflow by being larger than 128 bytes, then only the responses up to the most recent delimiter will be returned. For an example of a response, refer to ASCII Output Command Data Format.

Data inputs that are out of specific range will generally default to the minimum values, maximum values, or previous values.

(4) Command Groups

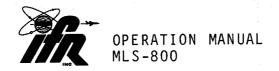
The command mnemonics used in the MLS-800 are longer than normally seen in GPIB controlled equipment. This process is used to give the unfamiliar programmer a clear understanding of the functions they will be executing. Because the possibility exists that the long transmission time required for these commands could seriously impede overall ATE systems performance, three command group buffers and associated commands: "CGX=", "CGX?", and "CGX." have been included (X=1, 2 or 3). These groups will allow the programmer to input up to 124 characters (128-"CGX=") to one of three command buffers for later execution by the "CGX." command. The "CGX." commands may be stacked as long as not more than one "CGX." command is included at the end of another "CGX=" input. As soon as the command input interpreter sees the "CGX." command, it will immediately append that command group buffer to the input buffer and proceed with normal command interpretation and execution. An example of the proper usage of command buffer stacking would be:

Example #1 Command Buffer Stacking:

"CG1=RID=ON:CHNL?"

"CG2=CHNL?CG1."

"CG3=UPDATE?CG2."


Executing a "CG3." command will return:

100:699:CHNL=699

NOTE: Do not use the same numbers (1, 2 or 3) in commands ("CG1", 2 or 3) within the same command group, e.g. "CG1 = XXX... CG1....". This will cause a system failure.

(5) Reply Identifier

When the Reply Identifier is activated by the command "RID=ON", the returned information for data or status requests will be preceded by the command nmemonic and an "=" character. This will continue until the command "RID=OFF" is given or the MLS-800 power is cycled. This feature is especially useful for data returned from a series of commands.

G. MLS-800 Instruction Set

The following paragraphs define the ASCII Commands used to control the MLS-800 under GPIB operation. The commands are grouped under paragraph headings according to the applicable function of each command.

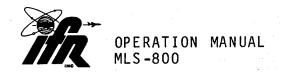
Qualifiers for each command are used throughout the following paragraphs and are defined as follows:

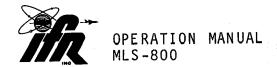
An "=" represents a "set" operation for that command.
A "?" represents a "get" operation for that command.
A "." represents an "enable" operation for that command.

Data listed under the range column reflects input/output data of the MLS-800. Data shown in parentheses is input data, that not enclosed in parentheses is output data, and a dash is used for commands having no input/output data.

(1) Menu Functions

COMMAND	RANGE	DEFINITION
CHNL=	500 to 699	Set MLS channel number.
CHNL?	(500 to 699)	Get current status of channel number.
RFLVL=	-17 to -122 dBm	Set RF power output level.
RFLVL?	(-17 to -122 dBm)	Get current status of RF power setting.
MODE =	NORMAZ/HIGHAZ	Set mode of operation.
MODE?	(NORMAZ/HIGHAZ)	Get current status of operation mode.
PPAR=	00/0E/E0/EE	Set preamble parity bits (Even/Odd) for the Sync word/beam.
PPAR?	(00/0E/E0/EE)	Get current status of pre- amble parity bits.


COMMAND	RANGE	DEFINITION	
FADE =	OFF/Ø.Ø5/1/1ØØØ Hz	Set Fade Rate.	
FADE?	(0FF/Ø.Ø5/1/1ØØØ Hz)	Get current status of Fade Rate.	
6.75=	ON/OFF	Set 6.75 Hz.	
6.75?	(ON/OFF)	Get current status of 6.75 Hz.	
PROP=	0FF/Ø to 199 Hz	Set Prop Mod.	
PROP?	(OFF/Ø to 199 Hz)	Get current status of Prop Mod.	
UPDATE=	Ø/25/45/ 55/75/1ØØ%	Set Update rate in percent of transmissions for the Sync word/beam.	
UPDATE?	(Ø/25/45/ 55/75/1ØØ%)	Get current status of Update rate.	
SYMM=	-6Ø to +6Ø	Forces an offset of the Sync word/beam for MLS testing.	
SYMM?	(-60 to +60)	Get current status of off- set of Sync word/beam.	
AZRAT=	Ø/-75 dB	Set Azimuth beam ratio.	
AZRAT?	(Ø/-75 dB)	Get current status of Azimuth ratio.	
AZ429?	(-62.000 to +62.000 Deg. or "")	Returns ARINC 429 Azimuth data in Ø.ØØ5 Degree steps, or 7 ASCII dashes if no data.	
EL429?	(-1.500 to +29.500 Deg. or "")	Returns ARINC 429 Elevation data in Ø.ØØ5 Degree steps.	
FL429?	(-2.000 to +29.500 Deg. or "")	Returns ARINC 429 Flare data in Ø.ØØ5 Degree steps.	
BAZ429?	(-41.000 to +41.000 Deg. or "")	Returns ARINC 429 Back Azimuth data in 0.005 Degre steps.	


COMMAND	RANGE	DEFINITION	
STAT429?	(OE/ON/OFF)	Returns status of Flag in 429 Mod.	
PFE?	-1 to +1 possible in 0.001° steps, or if value is greater than ±1 or nothing in Sync.	Returns value of measured Path Following Error in .001 Degree Steps or 7 ASCII dashes if no data or nothing in Sync.	
		NOTE: Requires some angle function, i.e., AZ, EL, BAZ, FL to be placed in Sync.	
CMN?	-1 to +1°possible in 0.001 steps, or if value is greater than ±1 or nothing in Sync.	Returns value of Control Motion Noise in .001 Degree Steps or 7 ASCII dashes if no data or nothing in Sync.	
		NOTE: Requires some angle function, i.e., AZ, EL, BAZ, FL to be placed in Sync.	
SDI?	(ØØ to 11 Binary or "")	Returns status of bits 10 and 9 of 429 word or two ASCII dashes if no data or nothing in Sync.	
SSM?	(ØØ to 11 Binary or "")	Returns status of bits 31 and 30 of 429 word or two ASCII dashes if no data or nothing in Sync.	
PAD?	(00 to 11 Binary or "")	Returns status of bits 12 and 11 of 429 word or two ASCII dashes if no data or nothing in Sync.	
AZ =	ON/OFF; -62.00 to +62.00 (Deg.); -3 to +13 (dB Preamble); NORM/ HALF; 0.5/1/2/3/4/5 (Deg.)	Set Azimuth beam conditions.	
AZ?	(Same as for "AZ")	Get current status of Azimuth Beam.	

COMMAND	RANGE	DEFINITION
EL=	ON/OFF; -1.50 to 29.50 (Deg.); -3 to +13 (dB); NORM/ HALF; 0.5/1/2/3/4/5 (Deg.)	Set Elevation Beam conditions.
EL?	(Same as for "EL=")	Get current status of Elevation Beam.
FL=	ON/OFF; -2.00 to +10.00 (Deg.); -3 to +13 (dB); NORM/ HALF; 0.5/1/2/3/4/5 (Deg.)	Set Flare Beam conditions.
FL?	(Same as for "FL=")	Get current status of Flare Beam.
B A Z =	ON/OFF; -41.00 to +41.00 (Deg.); -3 to +13 (dB); NORM/ HALF; 0.5/1/2/3/4/5 (Deg.)	Set Back Azimuth Beam conditions.
BAZ?	(Same as for "BAZ=")	Get current status of Back Azimuth Beam.
MP=	ON/OFF; -62.00 to +62.00 (Deg.); -14 to +13 (dB); NORM/ HALF/CLEAR; 0.5/1/ 2/3/4/5 (Deg/); -3 to +13 (left dB); -3 to +13 (right dB); 0 to 62.00 (Deg.).	Set Multipath conditions (last three fields apply only to Clearance).
MP?	(Same as for "MP=")	Get current status of Multipath Beam.
SYNCAZ.		Enable Sync on Azimuth Beam.
SYNCEL.		Enable Sync on Elevation Beam.
SYNCFL.		Enable Sync on Flare Beam.
SYNCBAZ.		Enable Sync on Back Azimuth Beam.

COMMAND	RANGE	DEFINITION		
SYNCDAT1.		Enable Sync on Data #1		
SYNCDAT2.		Enable Sync on Data #2		
SYNCDAT3.		Enable Sync on Data #3		
SYNCDAT4.		Enable Sync on Data #4		
SYNCDAT5.		Enable Sync on Data #5		
SYNCDAT6.		Enable Sync on Data #6		
SYNCDAT7.		Enable Sync on Data #7		
		NOTE: Applicable in ICAO 1981 Mode Only.		
SYNCDAT8.		Enable Sync on Data #8		
		NOTE: Applicable in ICAO 1981 Mode Only.		
SYNCDATA.		Enable Sync on Data AUX		
		NOTE: Applicable in ICAO 1981 Mode Only.		
SYNCOFF.		Turn Sync off.		
SYNC?	(AZ/EL/BAZ/FL/ DATA#1,DATA#2, DATA#3,DATA#4, DATA#5,DATA#6, DATA#7,DATA#8, DATA#8,DATAAUX)	Get current status of Sync		
AZOCIRT=	-4 to +7 dB Preamable	Set right Out-of-Coverage Indicator Beam for Azimuth.		
AZOCIRT?	(-4 to +7 dB Preamble)	Get current status of right Out-of-Coverage Indicator Beam for Azimuth.		
BAZOCIRT=	-4 to +7 dB Preamble	Set right Out-of-Coverage Indicator Beam for Back Azimuth.		
BAZOCIRT?	(-4 to +7 dB Preamble)	Get current status of right Out-of-Coverage Indicator Beam for Back Azimuth.		

COMMAND	RANGE	DEFINITION
AZOCILT=	-4 to +7 dB Preamble	Set left Out-of-Coverage Indicator Beam for Azimuth.
AZOCILT?	(-4 to +7 dB Preamble)	Get current status of left Out-of-Coverage Indicator Beam for Azimuth.
BAZOCILT=	-4 to +7 dB Preamble	Set left Out-of-Coverage Indicator Beam for Back Azimuth.
BAZOCITL?	(-4 to +7 dB Preamble)	Get current status of left Out-of-Coverage Indicator Beam for Back Azimuth.
AZOCIRR=	-4 to +7 dB Preamble	Set rear Out-of-Coverage Indicator Beam for Azimuth.
BAZOCIRR=	-4 to +7 dB Preamble	Set rear Out-of-Coverage Indicator Beam for Back Azimuth.
ELOCIRR=	-4 to +7 dB Preamble	Set rear Out-of-Coverage Indicator Beam for Elevation.
AZOCIRR?	(-4 to +7 dB Preamble)	Get current status of rear Out-of-Coverage Indicator Beam for Azimuth.
BAZOCIRR?	(-4 to +7 dB Preamble)	Get current status of rear Out-of-Coverage Indicator Beam for Back Azimuth.
ELOCIRR?	(-4 to +7 dB Preamble)	Get current status of rear Out-of-Coverage Indicator Beam for Elevation.
IDENT=	ON/OFF/CONT	Set Ident Tone to an active/inactive/continuous tone state.
IDENT?	(ON/OFF/CONT)	Get current status of Ident Tone.

ICAO 1981 DEFINITION SECTION-----

COMMAND	RANGE	DEFINITION
DW1=	ON/OFF; Ø to 63ØØ;	Set Data Word #1 a. Enable Switch b. Approach Azimuth to Threshold Distance, LSB = 100m
	-1Ø to -62;	c. Approach Azimuth Pro- portional Coverage (Negative Limit), LSB = 2°
	+10 to +62;	<pre>d. Approach Azimuth Pro- portional Coverage (Positive Limit), LSB = 2°</pre>
	Ø/1; Ø/1; 00/0E/E0/EE	e. Spare - (One bit) f. Clear - (One bit) g. Parity - Odd or Even
DW1?	(Same as for "DW1=")	Get current status of Data Word #1.
DW2=	ON/OFF; YES/NO; 2.Ø to 8.3; Ø to 3; Ø to 3; Ø to 127; OO/OE/EO/EE	Set Data Word #2 a. Enable Switch b. Back Azimuth Next - Yes or No c. Min Glide Path - 2.0° to 8.3°, LSB = 0.1° d. Ground Equipment Status (Two bits) e. DME Status - (Two bits) f. Spare - (Seven bits) g. Parity - Odd or Even
DW2?	(Same as for "DW2=")	Get current status of Data Word #2.

COMMAND	RANGE	DEFINITION
DW3=	ON/OFF; Ø.5 to 4.Ø Ø.5 to 2.5 Ø.5 to 1.Ø	Set Data Word #3 a. Enable Switch b. Approach Azimuth Beam- width, LSB = 0.5° c. Approach Elevation Beamwidth, LSB = 0.5° d. Flare Elevation Beam- width, LSB = 0.25° Approach Azimuth Sector
	1 to 8 1 to 4	Guidance Alert. e. Azimuth Sector: -60° to -20°, LSB = 1° f. Azimuth Sector: -20° to -5°, LSB = 1°
	1 to 4 1 to 8 00/0E/E0/EE	g. Azimuth Sector: +5° to +20°, LSB = 1° h. Azimuth Sector: +20° to +60°, LSB = 1° i. Parity - Odd or Even
DW3?	(Same as for "DW3=")	Get current status of Data Word #3.
DW 4 =	ON/OFF; -8188 to 8188; -155 to +155; OO/OE/EO/EE	Set Data Word #4 a. Enable Switch b. DME Distance, LSB = 4m c. DME Offset, LSB = 5m d. Parity - Odd or Even
DW4?	(Same as for "DW4=")	Get current status of Data Word #4.
DW5=	ON/OFF; -126 to +126;	Set Data Word #5. a. Enable Switch b. Approach Azimuth Antenna Offset, LSB = 2m
	YES/NO; Ø to 511 (Binary); Ø/1; 00/0E/E0/EE	 c. DME/DME-P - Yes or No d. DME Channel - (Nine bits) e. Spare - (One bit) f. Parity - Odd or Even

COMMAND	RANGE	DEFINITION
DW5?	(Same as for "DW5=")	Get current status of Data Word #5.
DW6=	ON/OFF; OO/OE/EO/EE	Set Data Word #6. a. Enable Switch b. Parity - Odd or Even
DW6?	(Same as for "DW6=")	Get current status of Data Word #6.
DW7=	ON/OFF; Ø to 3; Ø to 31ØØ; -1Ø to -4Ø;	Set Data Word #7. a. Enable Switch b. Ground Equipment Performance Level (Two Bits) c. Back Azimuth Antenna Distance, LSB = 100m d. Back Azimuth Propor- tional Coverage Limit
	+10 to +40; 1 to 4; 0/1; 00/0E/E0/EE	(Negative), LSB = 2° e. Back Azimuth Proportional Coverage Limit (Positive), LSB = 2° f. Back Azimuth Beamwidth, LSB = 1° g. Spare - (One Bit) h. Parity - Odd or Even
DW7?	(Same as for "DW7=")	Get current status of Data Word #7.
DW8 =	ON/OFF; -1 to +6.2; -15Ø to +15Ø; Ø to 635 OO/OE/EO/EE	Set Data Word #8 a. Enable Switch b. Elevation Antenna Height, LSB = 0.2m c. Elevation Antenna Offset, LSB = 10m d. MLS Datum point to Threshold Distance, LSB = 5m e. Parity - Odd or Even
DW8?	(Same as for "DW8=")	Get current status of Data Word #8.

COMMAND	RANGE	DEFINITION
DWA=	ON/OFF; Ø to 377 (Octal); Ø to 17 (Octal);	Set The Auxiliary Data Word. a. Enable Switch b. Address Transmission (Eight Bits) c. Data Transmission (First Four Bits of 52 Bits)
	Ø to 377 (Octal);	d. Data Transmission (Second Part - Eight Bits)
	Ø to 377 (Octal);	e. Data Transmission (Third Part - Eight Bits)
ļ	Ø to 377 (Octal);	f. Data Transmission (Fourth Part - Eight Bits)
	Ø to 377 (Octal);	g. Data Transmission (Fifth Part - Eight Bits)
	Ø to 377 (Octal);	h. Data Transmission (Sixth Part - Eight Bits)
	Ø to 377 (Octal);	i. Data Transmission (Seventh Part - Eight Bits)
	0000 to EEEE	j. Parity - Four Bits Odd or Even.
DWA?	(Same as for "DWA=")	Get current status of Auxiliary Data Word.
ICAO 1985	DEFINITION SECTION	
ICA01985.		Run in 1985 ICAO mode.
ICA01981.		Run in 1981 ICAO mode.
ICAO?	(1985/1981)	Return current ICAO mode.
SYNCAD1.		Sync on Aux Data #1 in 1985 ICAO.
SYNCAD2.		Sync on Aux Data #2 in 1985 ICAO.
SYNCAD3.		Sync on Aux Data #3 in 1985 ICAO.
SYNCAD4.		Sync on Aux Data #4 in 1985 ICAO.

COMMAND	RANGE	DEFINITION		
SYNC?	DATA#1,DATA#2, DATA#3,DATA#4, DATA#5,DATA#6, AD1,AD2,AD3,AD4	Gets current status of Sync.		
DW1=	ON/OFF; Ø to 63ØØ;	Set Data Word #1 in 1985 ICAO. a. Enable switch b. Approach Azimuth to		
	Ø to 62;	Threshold Distance, LSB = 100m c. Approach Azimuth pro- portional coverage negative limit, LSB = 2°		
	<pre>Ø to 62; Ø/1; Ø/1; 00/0E/E0/EE</pre>	 d. Approach Azimuth proportional coverage positive limit, LSB = 2° e. Clearance signal type f. Spare (One Bit) g. Parity - One Odd or Even 		
DW1?	(Same as "DW1=")	Get current status of Data Word #1.		
DW2=	ON/OFF; 2 to 14.7; Ø/1; Ø to 3; Ø/1; Ø/1;	Set Data Word #2 in 1985 ICAO. a. Enable switch. b. Minimum glidepath, LSB = 0.1° c. Back Azimuth status d. DME status e. Approach Azimuth status f. Approach Elevation status		
DW2?	Ø to 63; 00/0E/E0/EE (Same as "DW2=")	g. Spare (Six Bits) h. Parity - Odd or Even Get current status of Data		
DWZ:	(Same as Dwz-)	Word #2.		
DW3=	ON/OFF; Ø.5 to 4.0; Ø.5 to 2.5; Ø to 6387.5; Ø to 7; OO/OE/EO/EE	Set Data Word #3 in 1985 ICAO. a. Enable switch b. Approach Azimuth beam- width LSB = 0.5° c. Approach Elevation beamwidth LSB = 0.5° d. DME distance LSB = 12.5m e. Spare (Three bits) f. Parity - Odd or Even		

COMMAND	RANGE	DEFINITION
DW3?	(Same as "DW3=")	Get current status of Data Word #3.
D W 4 =	ON/OFF; Ø to 359; Ø to 359; OO/OE/EO/EE	Set Data Word #4 in 1985 ICAO. a. Enable switch b. Approach Azimuth zero- degree guidance plane, LSB = 1 c. Back Azimuth zero- degree guidance plane, LSB = 1 d. Parity - Odd or Even
DW4?	(Same as "DW4=")	Get current status of Data Word #4.
D W 5 =	ON/OFF; Ø to 42; Ø to 42; Ø.5 to 4.0; Ø to 31; OO/OE/EO/EE	Set Data Word #5 in 1985 ICAO. a. Enable switch b. Back Azimuth proportional coverage negative limit, LSB = 2° c. Back Azimuth proportional coverage positive limit, LSB = 2° d. Back Azimuth beamwidth LSB = 0.5° e. Spare (Five bits) f. Parity - Odd or Even
DW5?	(Same as "DW5=")	Get current status of Data Word #5.
DW6=	ON/OFF; 00/0E/E0/EE	Set Data Word #6 in 1985 ICAO. a. Enable switch b. Parity - Odd or Even
DW6?	(Same as "DW6=")	Get current status of Data Word #6.
ADX=	ON/OFF; A/B/C/A1/A2/A3/A4; DATA; OOOOOOO to EEEEEEE	Set aux data word for 1985 ICAO. Up to four aux data words may be sent where X is 1 to 4. a. Enable switch b. Data type (Note 1) c. Data (Note 2) d. Parity - Odd or Even

COMMAND	RANGE		DEFINITION
Note 1:	Type may be A,B,C,A1,A2 type of data sent.	,A3,	A4 and determines the
Note 2:	If type A, B or C, data	is	transmitted as follows:
	<pre>Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 377 (Octal); Ø to 1 (Octal);</pre>	a. b. c. e. f. g.	address data-1 data-2 data-3 data-4 data-5 data-6 data-7
(2) Add	itional Auxiliary Types		
Type A1:	-511 to 511;	a.	antenna offset, LSB =
	Ø to 8191;	b.	<pre>1m Approach Azimuth to MLS datum point distance, LSB = 1m</pre>
	-20.47 to 20.47;	с.	Approach Azimuth antenna alignment with runway center line, LSB = 0.01°
	Ø/1;	d.	Approach Azimuth antenna coordinate system
	Ø to 377;	e.	Spare (Eight Bits - Octal)
	Ø to 37;	f.	Spare (Five Bits - Octal)
	0000000 to EEEEEEE	g.	Parity - Odd or Even
Type A2:	-511 to 511;	a.	Approach Elevation antenna offset, LSB = 1m
	Ø to 1Ø23;	b.	MLS datum point to LSB = 1m
	-6.3 to 6.3;	c.	Approach Elevation antenna height, LSB = 0.1m
	Ø to 377;	d.	Spare (Eight Bits - Octal)
	Ø to 377;	е.	Spare (Eight Bits - Octal)
	Ø to 77;	f.	Spare (Six Bits - Octal)
	0000000 to EEEEEEE	g.	m Odd an Euge

COMMAND	RANGE	DEFINITION
Type A3:	-511 to 511; -8191 to 8191;	a. DME offset LSB = 1mb. DME to MLS datum point distance, LSB = 1m
	Ø to 377;	c. Spare (Eight Bits - Octal)
	Ø to 377;	d. Spare (Eight Bits - Octal)
	Ø to 377;	e. Spare (Eight Bits - Octal)
	Ø to 1; 0000000 to EEEEEEE	f. Spare (One Bit - Octal) g. Parity - Odd or Even
Type A4:	-511 to 511;	a. Back Azimuth antenna offset, LSB = 1m
	Ø to 2047;	b. Back Azimuth to MLS datum point distance, LSB = 1m
	-2Ø.47 to 2Ø.47;	c. Back Azimuth antenna alignment with runway center line, LSB = 0.01°
	Ø to 377;	d. Spare (Eight Bits - Octal)
	Ø to 377;	e. Spare (Eight Bits - Octal)
	0000000 to EEEEEEE	f. Parity - Odd or Even
ADX?	(Same as ADX=)	Get current status of 1985 Auxiliary Data Words.
(3) Keybo	oard Functions not Inc	cluded in the Menu Functions
RECALL(nn).		Recall a menu from MLS memory (nn = 1 to 12).
SAVE(nn)=	Only printable ASCII letters.	Store a menu into MLS Memory (nn = 1 to 12 with an optional 8 character label).
SAVE(nn)?	Max. 8 ASCII letters or spaces.	Returns label for Saved Menu.
WPROT(nn).		Apply write protection to stored menu (nn = 1 to 12).
PURGE(nn.)		Erase the stored menu.

(4) Spec	ial Functions	
COMMAND	RANGE	DEFINITION
CG1=	ASCII Char.;;	Store up to 128 characters (MLS-800 GPIB Commands) for later execution by the "CG1." Command.
CG1?	(Same as for "CG1=")	Returns current status of CG1.
CG1.		Execute series of commands stored in the CG1 internal buffer.
CG2=	ASCII Char.;; ASCII Char.	Store up to 128 ASCII Characters (MLS-800 GPIB Commands) for later execu- tion by the "CG2." Command.
CG2?	(Same as for "CG2=")	Returns current status of CG2.
CG2.		Execute series of commands stored in the CG2 internal buffer.
CG3=	ASCII Char.;; ASCII Char.	Store up to 128 ASCII Characters (MLS-800 GPIB Commands) for later execu- tion by the "CG3." Command.
CG3?		Returns current status of CG3.
CG3.		Execute series of commands stored in the CG3 internal buffer.
RID=	ON/OFF	Controls the Reply Identi- fier Switch. When ON, will add the command name fol- lowed by "=" as a prefix to a command's response.
RID?	(ON/OFF)	Returns current status of RID.

COMMAND	RANGE	DEFINITION				
TERM=	1 (CRLF)/2 (LFCR)/ 3 (CRCR)/4 (LFLF)	This command allows the operator to specify the desired terminator for the end-of-string output of th MLS-800 GPIB. CR = Carriage Return LF = Line Feed				
TERM?	(Same as for "TERM=")	Returi TERM.	ns current st	atus of		
SRQ=	ØØØØØØØ to 1111111 (Binary)	intern	he GPIB SRQ 1 rupt mask. A rupt will occerror or stat that occurs was bit has bee The error/st tions are:	n SRQ ur for us condi- hose n set		
		BIT/S	STATE	CONDITION		
		0	O = Local	Local/ Remote Status		
		1	Not Defined			
		2	0 = No Error 1 = Error	System Error Status		
		3	0 = No Error 1 = Error	429 Comm Error Status		
		4	Not Defined			
		5	Not Defined			
		6	0 = Not Triggered 1 = Trig-	SRQ Trigger Status		
		-	gered			
		7	Not Defined	1		

COMMAND	RANGE	DEFINITION
SRQ?	(0000000 to 1111111 (Binary))	Returns current status of SRQ.
ERRM?	Return system error warning message or "No Warning".	1. DATA OUT OF RANGE. 2. INVALID COMMAND. 3. THE FUNCTION IN SYNC IS OFF. 4. MAIN BEAM BOARD INACTIVE. 5. MULTIPATH BEAM BOARD INACTIVE. 6. INVALID PAGE NUMBER. 7. PAGE IS WRITE PROTECTED. 8. PAGE IS EMPTY.

NOTE: This Warning or Error message is cleared when this command is executed.

SECTION 3 - SPECIFICATIONS

Following are the specifications for the MLS-800 Microwave Landing System Test Set:

A. RF Signal Generator

Frequency Range:

5031-5090.7 MHz in 0.3 MHz steps

Frequency Accuracy:

±2 kHz

RF Output Power:

-17 dBm to -122 dBm (± 2 dB)

preamble level

Modulation:

AM and DPSK

A DPSK "zero" is represented by 0° (± 10 °) phase shift and a DPSK "one" is represented by 180°

(±10°) phase shift.

B. Functions

Azimuth:

±62° in 0.05° steps, ±0.005°

accuracy (See Note 1).

High Rate Azimuth:

±42° in 0.05° steps, ±0.005°

accuracy (See Note 1).

Elevation:

-1.5° to +29.5° in .05° steps ±0.005° accuracy (See Note 1).

Flare:

-2° to +10° in 0.05° steps

±0.005° accuracy (See Note 1).

Back Azimuth:

±41° in 0.05° steps, ±0.005°

accuracy (See Note 1).

Basic Data:

All functions selectable on menu

with selectable parity error

Auxiliary Data:

All auxiliary data words

selectable.

C. Mainpath Beam

Beam Shape:

Approximately sinx/x and $\frac{1}{2}sinx/x$ waveforms with -20 dBc side lobes at $\frac{1}{2}$ width that fills time slot.

Beam Width:

0.5, 1, 2, 3, 4, 5, degrees (±10%) width. (See Note 1).

Level:

Adjustable relative to preamble, +13 to -3 dB (±1 dB) in 1 dB steps. (See Note 2).

D. OCI Pulses (Right, Left, Rear)

Width:

100 μ s, \pm 10 μ s

Level:

+7 to -4 dB (± 1 dB) relative to preamble in 1 dB steps.

E. Multipath Beam

Angle:

Selectable in 0.05° steps with ±0.05° accuracy and to the maximum angle available for the particular function (azimuth, elevation, etc.).

Beam Shapes:

Approximately sinx/x, ½ sinx/x waveforms on all functions and clearance pulse pairs on AZ, Hi Rate AZ and BAZ.

Beam Width:

0.5, 1, 2, 3, 4, 5 degrees ($\pm 10\%$) width. (See Note 1).

Level:

+13 dB to -14 dB (±1 dB) relative to preamble in 1 dB steps; when clearance is selected, each pulse is individually selectable in amplitude. (See Note 2).

Fade Rate:

Selectable as $0.05~\mathrm{Hz}$, $1~\mathrm{Hz}$, or $1000~\mathrm{Hz}$.

Clearance Pulse:

Two pulses, spaced equidistant from 0° and selectable in 0.05° steps with ± 0.05 ° accuracy. Each pulse is 50 µs (± 5 µs) wide. The Amplitudes are selectable from ± 13 to ± 3 dB (± 1 dB) relative to preamble, in 1 dB steps for left and right clearance pulses with angular displacement related to function in Sync. (NORM, Hi Rate and BAZ functions only.) Angular range is ± 1 ° to ± 61 ° for Normal Azimuth and ± 41 ° for High Rate Azimuth and Back Azimuth.

F. Azimuth To Elevation Ratio

Selection:

Selectable so Azimuth to Elevation Ratio is O dB or -75 dB (±2 dB).

G. Propeller Modulation

Frequency:

Variable 1 Hz to 199 Hz in 1 Hz

steps.

Duty Cycle:

-12 dBc (±1 dB) is applied for

15% ($\pm 1\%$) of cycle.

Timing:

Not in Sync with any function.

H. 6.75 Hz Modulation

Selection:

Selectable ±6 dBc (±1 dB) square wave modulation to the main path beam. Not in Sync with any

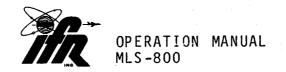
function.

I. Morse Code

Selection:

Off, "IFR" or Continuous Tone

J. Oscilloscope Sync


Selection:

Selectable to coincide with the start of the preamble of Azimuth, Elevation, Flare, Back Azimuth, basic or auxiliary Data Words.

Amplitude:

Positive TTL pulse approximately

14 μ s wide.

K. Function Update Rate

Selection:

The function in Sync is reduced in repetition rate, selectable as 100%, 75%, 55%, 45%, 25%, or 0%, (±2.5%) measured over a tensecond interval. The 100% update

rate is as follows:

Function	Average Rate Over 10 Seconds
AZ	13 ±0.5 Hz
High Rate AZ	39 ±1.5 Hz
BAZ	6.5 ±0.25 Hz
EL	39 ±1.5 Hz

L. Function Preamble Parity

Selection:

The function identified by the oscilloscope Sync selection is the candidate to have its preamble function code parity bits individually inverted to provide parity error.

Scanning Beam Time Symmetry

Selection:

-60 to +60 in 1 μ s steps; variable scanning beam offset referenced to the preamble Receiver Time Reference Code (active on same function as is selected by Sync).

N. System Clock

Selection:

8.0 MHz, ±80 Hz

External Reference Input

Selection:

Variable 9.999940 MHz to 10.000060 MHz, +3 dBm Nominal. P. ARINC 429 Data

Selection:

12.5 and 100 K BPS data rates in RZ format. Input and Output

Levels are as follows:

Logic "1" = +5 to +10 V Logic "0" = -5 to -10 V

Rise and Fall Time is $<1.5 \mu s$.

Q. GPIB (Option)

Selection:

Conforms to IEEE-488 1978 Standard for Talker/Listener.

R. CRT

Type:

Green display

Size:

7" diagonal

S. Power

DC:

11-30 Volts, 100 Watts

AC:

103.5-266 Volts 45-440 Hz, 85

Watts

Battery:

Ten minute time-out circuit to prevent accidental discharge. Low voltage detect turns off unit

prior to performance being affected. Minimum of 30 minutes

total usable time before

recharging, assuming full charge

initially.

T. Physical Characteristics

Weight:

47 lbs.

Operating Temperature:

-10° to +55°C

Size:

12.5" Wide 9" High

19.5" Deep

U. Reference Notes

 $\frac{\text{Note 1}}{\text{han maximum range is limited to slightly less}} \\ \text{than maximum range with a beamwidth of 0.5°} \\ \text{according to the table below:}$

Function	Range	
AZ EL BAZ	-61° to +61° -1.0° to +29.5° -41° to +41°	
FL	-2° to +10°	
HI AZ	-41° to +41°	

Note 2: When -17 dBm RF Level is applied, the modulation level should not exceed +10 dB relative to preamble level.

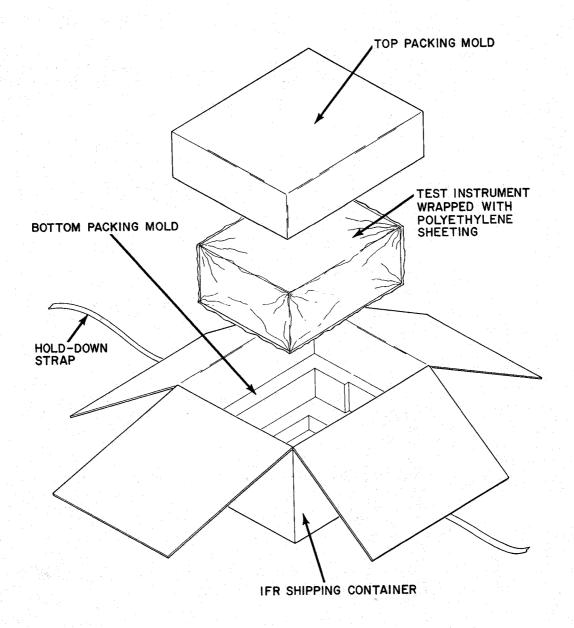
SECTION 4 - REPACKING FOR SHIPMENT

- The following information applies to shipping and repacking 1. procedures for the MLS-800.
 - Α. Shipping Information

IFR test sets returned to factory for calibration, service or repair must be repackaged and shipped subject to the following conditions:

Do not return any products to factory without first receiving authorization from IFR Customer Service Department.

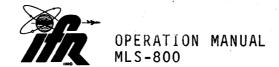
CONTACT:


Customer Service Dept. IFR, Inc. 10200 West York Street Wichita, Kansas 67215

Telephone: (800)-835-2350 TWX: 910-741-6952

- All test sets must be tagged with: (2)
 - (a) Owner's identification and address. Nature of service or repair required. (b)
 - (c) Model No.
 - (d) Serial No.
- Sets must be repackaged in original shipping con-(3) tainers using IFR packing models. If original shipping containers and materials are not available. contact IFR Customer Service Dept. for shipping instructions.
- All freight costs on non-warranty shipments are assumed by customer. (See "Warranty Packet" for freight charge policy on warranty claims.)
- Repacking Procedure (Refer to Figure 1) В.
 - (1)Make sure bottom packing mold is seated on floor of shipping container.
 - (2) Carefully wrap test set with polyethylene sheeting to protect finish.
 - Place test set into shipping container, making sure (3) set is securely seated in bottom packing mold.

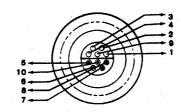
- (4) Place top packing mold over top of set and press down until mold rests solidly on bottom packing mold.
- (5) Close shipping container lids and seal with shipping tape or an industrial stapler. Tie all sides of container with break resistant rope, twine or equivalent.



Repacking Procedure Figure 1

SECTION 5 - STORAGE

- 1. Please note the following storage precautions.
 - A. No particular storage requirements are necessary during extended periods in which the Test Set will not be utilized.
 - B. The following common sense practices should be done, however:
 - (1) Disconnect the Test Set from any electrical power source.
 - (2) Disconnect and store the AC power cable and any other accessories with the Test Set.
 - (3) Cover the Test Set to prevent dust and debris covering and entering the Test Set.

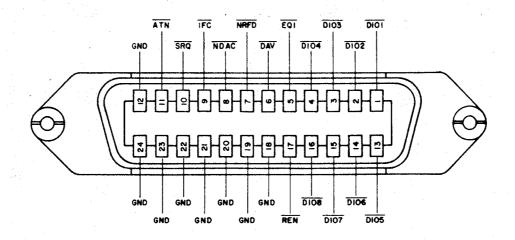

APPENDIX A: TABLE OF USER I/O PORTS/CONNECTOR PIN-OUT TABLES

1. Table of I/O Ports

CONNECTOR NAME	CONNECTOR TYPE	SIGNAL INPUT/OUTPUT	SIGNAL TYPE
RF OUT	Type N	OUTPUT	RF
ARINC 429 BUS	10-pin LEMO	INPUT/OUTPUT	See Pin Out
SYNC	BNC	OUTPUT	TTL
VIDEO	BNC	OUTPUT	Video
EXT REF	BNC	INPUT	RF
GPIB	IEEE 488/ANS1 MC1.1	INPUT/OUTPUT	See Pin Out

2. Pin Out Table for ARINC 429 BUS Connector

PIN NO.	SIGNAL NAME	SIGNAL TYPE	INPUT/OUTPUT
1	TXIA (12.5 K bps) 42	RZ format	Output
2	TXIB (12.5 K bps) 42	RZ format	Output
3	GND		
4	RXIA (12.5 K bps) 4: Receive	RZ format	Input
5	RXIB LOW SPEED (12.5 K bps) 4	RZ format	Input
6	TX2A (100 K bps) 42 Transmit	RZ format	Output
7	TX2B HIGH SPEED (100 K bps) 42 Transmit	RZ format	Output
8	GND		
9	RX2A HIGH SPEED (100 K bps) 4:	RZ format	Input
10	RX2B HIGH SPEED RX2B (100 K bps) 4 Receive	RZ format	Input

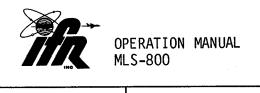


ARINC 429 BUS Connector Figure 1

3. Pin Out Table for GPIB Connector (Refer to Figure 1)

	1		
PIN NO	SIGNAL NAME	SIGNAL TYPE	INPUT/OUTPUT
1	DIOI	TTL	Input/Output
2	DI 02	TTL	Input/Output
3	DI 03	TTL	Input/Output
4	DI 04	TTL	Input/Output
5	EOI	TTL	Input
6	DAV	TTL	Input/Output
7	NRFD	TTL	Input/Output
8	NDAC	TTL	Input/Output
9	ĪFĊ	TTL	Input
10	SRQ	TTL	Output
11	ATN	TTL	Input
12	GND		
13	DI 05	TTL	Input/Output
14	DI 06	TTL	Input/Output
15	DI 07	TTL	Input/Output
16	DI 08	TTL	Input/Output
17	REN	TTL	Input
18	Paired with 6	* 	
19	Paired with 7		
20	Paired with 8		
21	Paired with 9		
22	Paired with 10		
23	Paired with 11		
24	GND		
		<u> </u>	

GPIB Connector Figure 1


APPENDIX B: MLS ANGLE, DATA AND DME/P CHANNELING CHART

1. The MLS channel pairing along with the DME parameters is listed below:

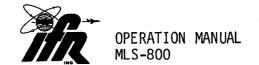
	-		-			OME PAI	RAMETE	RS	<u> </u>
	CHANNEL	PAIRING		INTERROGATION			REPLY		
DME	VHF FREQ.	MLS ANGLE FREQ.	MLS CH	FREQ.	PULS DME/N	DME/P		FREQ.	PULSE CODES
No.	MHz	MHz	No.	MHz	μs	μs	μS	MHz	μS
* 1X ** 2Y ** 3Y ** 4Y ** 5Y ** 6Y ** 7Y ** 89 ** 10Y ** 11Y ** 12Y ** 13X ** 14Y ** 15Y ** 16Y ** 17Z 18X				1025 1026 1026 1027 1027 1028 1028 1029 1030 1031 1031 1032 1032 1033 1034 1034 1035 1035 1036 1037 1037 1037 1038 1038 1039 1040 1041 1041 1041 1041	12 36 12 12 36 12 12 12 12 12 12 12 12 12 12 12 12 12			962 1088 963 1089 964 1090 965 1091 966 1092 967 1093 968 1094 969 1095 970 1096 971 1097 972 1098 973 1099 974 1100 975 1101 976 1102 977 1103 978 1104 1104 979	12 30 12 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 30 12 30 10 10 10 10 10 10 10 10 10 10 10 10 10

					[OME PAI	RAMETE	ERS	
	CHANNEL	PAIRING		IN.	TERROGAT	TION	***************************************	REPLY	
		MIC			PULS	SE CODI	ES		
	VHF	MLS ANGLE	MLS		i	DME/P	MODE		PULSE
DME	FREQ.	FREQ.	СН	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μς
18W	-	5031.3	501	1042	-	24	30	979	24
18Y	108.15	5043.6	542	1042	36	36	42	1105	30
18Z	-	5043.9	543	1042	-	21	27	1105	15
19X	108.20	-	-	1043	12	-		980	12
19Y	108.25	5044.2	544	1043	36	36	42	1106	30
19Z	-	5044.5	545	1043	-	21	27	1106	15
20X	108.30	5031.6	502	1044	12	12	18	981	12
20W	-	5031.9	503	1044	-	24	30	981	24
20Y	108.35	5044.8	546	1044	36	36	42	1107	30
20Z	-	5049.1	547	1044	-	21	27	1107	15
21X	108.40	· -	-	1045	12	-	-	982	12
21Y	108.45	5045.4	548	1045	36	36	42	1108	30
21Z	_	5045.7	549	1045	-	21	27	1108	15
22X	108.50	5032.2	504	1046	12	12	18	983	12
22W	_	5032.5	505	1046	_	24	30	983	24
22Y	108.55	5046.0	550	1046	36	36	42	1109	30
22Z	-	5046.3	551	1046	-	21	27	1109	15
23X	108.60	-	_	1047	12	-	_	984	12
23Y	108.65	5046.6	552	1047	36	36	42	1110	30
23Z	_	5046.9	553	1047	-	21	27	1110	15
24X	108.70	5032.8	506	1048	12	12	18	985	12
24W		5033.1	507	1048		24	30	985	24
24Y	108.75	5047.2	554	1048	36	36	42	1111	30
24Z		5047.5	555	1048	50	21	27	1111	15
25X	108.80	5047.5	-	1049	12			986	12
25Y	108.85	5047.8	556	1049	36	36	42	1112	30
25Z		5047.8	557	1049		21	27	1112	15
26X	108.90	5033.4	508	1050	12	12	18	987	12
26W		5033.7	509	1050	14	24	30	987	24
26Y	108.95	5048.4	558	1050	36	36	42	1113	30
26Z	100.30	5048.7	559	1050	JU .	21	27	1113	15
27X	109.00	3040./			12	21			
27X 27Y		5049.0	- 560	1051		36	- 42	988 1114	12
	109.05			1051	36				30
27Z	100 10	5049.3	561	1051	12	21	27	1114	15
28X	109.10	5034.0	510	1052	12	12	18	989	12
28W	100 15	5034.3	511	1052	-	24	30	989	24
28Y	109.15	5049.6	562	1052	36	36	42	1115	30
28Z	-	5049.9	563	1052	-	21	27	1115	15
29X	109.20	-	-	1053	12	-	-	990	12
29Y	109.25	5050.2	564	1053	36	36	42	1116	30
29Z	-	5050.5	565	1053	-	21	27	1116	15
30X	109.30	5034.6	512	1054	12	12	18	991	12

·						ME PAF	RAMETE	:RS	
	CHANNEL	PAIRING		INTERROGATION			REPLY		
		Mi C			PULS	SE CODE			
	VHF	MLS ANGLE	MLS			DME/P	MODE		PULSE
DME	FREQ.	FREQ.	СН	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μς	μs	μs	MHz	μs
30W	1	5034.9	513	1054	-	24	30	991	24
30Y	109.35	5050.8	566	1054	36	36	42	1117	30
30Z	-	5051.1	567	1054	10	21	27	1117	15 12
31X	109.40		-	1055	12	- 26	42	992 1118	30
31Y	109.45	5051.4	568	1055	36	36 21	27	1118	15
31Z	100 50	5051.7	569 514	1055 1056	12	12	18	993	12
32X 32W	109.50	5035.2 5035.5	514	1056	12.	24	30	993	24
32W 32Y	109.55	5052.0	570	1056	36	36	42	1119	30
32 Z	109.55	5052.3	571	1056	-	21	27	1119	15
33X	109.60	-	- -	1057	12			994	12
33Y	109.65	5052.6	572	1057	36	36	42	1120	30
33Z	-	5052.9	573	1057	-	21	27	1120	15
34X	109.70	5035.8	516	1058	12	12	18	995	12
34W	_	5036.1	517	1058	-	24	30	995	24
34Y	109.75	5053.2	574	1058	36	36	42	1121	30
34Z	-	5053.5	575	1058	-	21	27	1121	15
35 X	109.80	-	-	1059	12	-	-	996	12
35 Y	109.85	5053.8	576	1059	36	36	42	1122	30
35 Z	-	5054.1	577	1059	-	21	27	1122	15
36X	109.90	5036.4	518	1060	12	12	18	997	12
36W	-	5036.7	519	1060	-	24	30	997	24
36Y	109.95	5054.4	578	1060	36	36	42	1123	30
36Z	-	5054.7	579	1060	-	21	27	1123	15
37X	110.00		-	1061	12		-	998	12 30
37Y	110.05	5055.0	580	1061	36	36	42	1124 1124	30 15
37Z	-	5055.3	581	1061	10	21 12	27 18	999	12
38X	110.10	5037.0	520	1062	12	24	30	999	24
38W	110 15	5037.3	521 582	1062 1062	36	36	42	1125	30
38Y	110.15	5055.6 5055.9	583	1062	-	21	27	1125	15
38Z	110.20	5055.9	363	1063	12			1000	12
39X 39Y	110.20	5056.2	584	1063	36	36	42	1126	30
39Z	110.25	5056.5	585	1063	-	21	27	1126	15
40X	110.30	5037.6	522	1064	12	12	18	1001	12
40W	-	5037.9	523	1064	-	24	30	1001	24
40Y	110.35	5056.8	586	1064	36	36	42	1127	30
40Z		5057.1	587	1064	_	21	27	1127	15
41X	110.40	-	-	1065	12	-	-	1002	12
41Y	110.45	5057.4	588	1065	36	36	42	1128	30
41Z	-	5057.7	589	1065	-	21	27	1128	15
	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L

	-				DME PARAMETERS					
	CHANNEL	PAIRING	IN	TERROGAT	TION	REPLY				
			:	·	PULS	SE CODI	ES			
	VHF	MLS ANGLE	MLS			DME/P MODE			PULSE	
DME	FREQ.	FREQ.	CH	FREQ.	DME/N	IA	FA	FREQ.	CODES	
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μs	
42W	_	5038.5	525	1066	-	24	30	1003	24	
42Y	110.55	5058.0	590 501	1066 1066	36	36 21	42 27	1129 1129	30 15	
42Z 43X	110.60	5058.3	591	1067	<u>-</u> 12	21	- 21	1004	12	
43Y	110.65	5058.6	592	1067	36	36	42	1130	30	
43Z	-	5058.9	593	1067	-	21	27	1130	15	
44X	110.70	5038.8	526	1068	12	12	18	1005	12	
44W	ļ. -	5039.1	527	1068	-	24	30	1005	24	
44Y	110.75	5059.2	594	1068	36	36	42	1131	30	
44Z		5059.5	595	1068	-	21	27	1131	15	
45X	110.80	-	-	1069	12	-	-	1006	12	
45Y 45Z	110.85	5059.8 5060.1	596 597	1069 1069	36	36 21	42 27	1132 1132	30 15	
45Z 46X	110.90	5039.4	528	1009	12	12	18	1007	12	
46W	110.90	5039.7	529	1070	-	24	30	1007	24	
46Y	110.95	5060.4	598	1070	36	36	42	1133	30	
46Z		5060.7	599	1070	-	21	27	1133	15	
47X	111.00	- .	-	1071	12	-	-	1008	12	
47Y	111.05	5061.0	600	1071	36	36	42	1134	30	
47Z		5061.3	601	1071	-	21	27	1134	15	
48X	111.10	5040.0	530	1072	12	12	18	1009	12 24	
48W 48Y	111.15	5040.3 5061.6	531 602	1072 1072	- 36	24 36	30 42	1009 1135	30	
48Z	111.13	5061.0	603	1072	- -	21	27	1135	15	
49X	111.20	5001.5	_	1073	12	-		1010	12	
49Y	111.25	5062.2	604	1073	36	36	42	1136	30	
49Z	_	5062.5	605	1073	_	21	27	1136	15	
50X	111.30	5040.6	532	1074	12	12	18	1011	12	
50W	-	5040.9	533	1074	-	24	30	1011	24	
50Y	111.35	5062.8	606	1074	36	36	42	1137	30	
50Z	111 40	5063.1	607	1074	12	21	27	1137 1012	15 12	
51X 51Y	111.40 111.45	5063.4	- 608	1075 1075	36	- 36	42	1138	30	
51Z		5063.7	609	1075	-	21	27	1138	15	
52X	111.50	5041.2	534	1076	12	12	18	1013	12	
52W	_	5041.5	535	1076	-	24	30	1013	24	
52Y	111.55	5064.0	610	1076	36	36	42	1139	30	
52Z	<u>-</u>	5064.3	611	1076	-	21	27	1139	15	
53X	111.60	-	-	1077	12	-	-	1014	12	
53Y	111.65	5064.6	612	1077	36	36	42	1140	30	
53Z	111 70	5064.9	613 536	1077 1078	- 12	21 12	27 18	1140 1015	15 12	
54X	111.70	5041.8	550	10/6	1.6	14	10	1013	<u> </u>	

CHANNEL PAIRING					DME PARAMETERS					
No. MHz		CHANNEL	PAIRING		IN.	TERROGAT	REP	LY		
No. MHz						PULSE CODES				
No. MHz		VIII		MIC			DME/P	MODE		PHI SF
SAW	DME				FREQ.	DME/N	IA	FA	FREQ.	
SAW	No.	MHz	MHz	No.	MHz	με	μs	μς	MHz	us
72X 112.50 - 1096 12 - 1159 12 ** 72Y 112.55 - - 1096 36 - - 1033 30	54Z 54Z 55Z 56Z 56Z 57Z 57Z 57Z 57Z 57Z 57Z 57Z 57	111.80 111.85 - 111.90 - 111.95 - 112.00 112.05 112.10 112.15 112.20 112.25 - - - - - - - - - - - - -	5065.2 5065.5 - 5065.8 5066.1 5042.4 5042.7 5066.4 5066.7 - - - - -	514 615 - 616 617 538 539 618 619 - - - -	1078 1079 1079 1079 1079 1080 1080 1080 1080 1081 1081 1082 1083 1084 1084 1085 1086 1087 1087 1088 1088 1089 1090 1091 1091 1092 1092 1093 1093 1094 1095 1096	- 12 36 - 12 36 - 12 36 36 36 36 36 36 36 36 36 36 36 36 36	36 21 - 36 21 12 24 36 21 - - -	42 27 42 27 18 30 42 27	1141 1141 1016 1142 1142 1017 1017 1143 1018 1144 1019 1145 1020 1146 1021 1147 1022 1148 1023 1149 1024 1150 1151 1025 1152 1026 1153 1027 1154 1028 1155 1029 1156 1030 1157 1031 1158 1032 1159	30 15 12 30 15 12 30 15 12 30 12 12 30 10 10 10 10 10 10 10 10 10 10 10 10 10

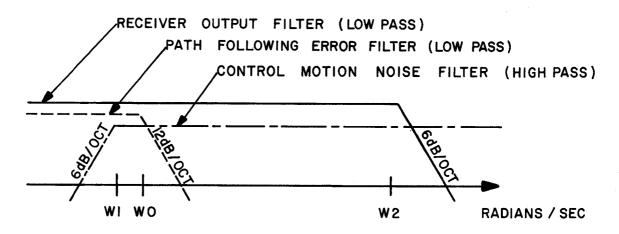

•		DME PARAMETERS							
	CHANNEL	IN	TERROGAT	RE	PLY				
		MLS			PULSE CODES			· · · · · · · · · · · · · · · · · · ·	
	VHF	ANGLE	MLS			DME/P	MODE		PULSE
DME	FREQ.	FREQ.	СН	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μs
73X	112.60	_	_	1097	12	-	-	1160	12
** 73Y	112.65	-	-	1097	36	-	-	1034	30
74X	112.70	-	-	1098	12	-	-	1161	12
** 74Y	112.75	-	-	1091	36	-	-	1035	30
75X	112.80	-	-	1099	12	-	-	1162	12
** 75Y	112.85	-	-	1099	36	-	-	1036	30
76X	112.90	-	-	1100	12	-	-	1163	12
** 76Y	112.93	-	-	1100	36	-	-	1037	30
77X ** 77Y	113.00	-	-	1101	12	-	-	1164	12
78X	113.05	-	_	1101 1102	36	-	-	1038	30
** 78X	113.10 113.15	_	_	1102	12 36	-	-	1165	12
79X	113.15	_	-	1102	36 12	-	_	1039 1166	30 12
** 79Y	113.25	<u>-</u>		1103	36	-	-	1040	30
80X	113.23	_		1103	12	-	_	1167	12
80X	113.35	5067.0	620	1104	36	36	42	1041	30
80Z	113.33	5067.3	621	1104	50	21	27	1041	15
81X	113.40		-	1105	12			1168	12
81Y	113.45	5067.6	622	1105	36	36	42	1042	30
81Z	_	5067.9	623	1105	_	21	27	1042	15
82X	113.50	-	-	1106	12	_		1169	12
82Y	113.55	5068.2	624	1106	36	36	42	1043	30
82Z	_	5068.5	625	1106	_	21	27	1043	15
83X	113.60	-	-	1107	12	-	_	1170	12
83Y	113.65	5068.8	626	1107	36	-36	42	1044	30
83Z	· -	5069.1	627	1107	-	21	27	1044	15
84X	113.70	-	-	1108	12	-	-	1171	12
84Y	113.75	5069.4	628	1108	36	36	42	1045	30
84Z	-	5069.7	629	1108	-	21	27	1045	15
85 X	113.80	-	-	1109	12	-	-	1172	12
85Y	113.85	5070.0	630	1109	36	36	42	1046	30
85Z	-	5070.3	631	1109	-	21	27	1046	15
86 X	113.90	-	-	1110	12	-	- 1	1173	12
86Y	113.95	5070.6	632	1110	36	36	42	1047	30
86Z	114 00	5070.9	633	1110	10	21	27	1047	15
87Z	114.00	F071 0	624	1111	12	-	40	1174	12
87Y	114.05	5071.2	634	1111	36	36	42	1048	30
87Z	114 10	5071.5	635	1111	12	21	27	1048	15 12
88X 88Y	114.10 114.15	5071.8	- 636	1112 1112	36	- 36	- 42	1175 1049	30
88Z	_114.12	5071.8	637	1112	. JU	21	27	1049	15
89X	114.20	30/2.1	-	1113	12	-		1176	12
	114.50		_	1113	14			11/0	14

				DME PARAMETERS					
	CHANNEL	PAIRING		IN	TERROGAT	ION		REP	LY
					PULSE CODES				
	V/10	MLS ANGLE	MLS			DME/P	MODE		PULSE
DME	VHF FREQ.	FREQ.	CH	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μs
89Y	114.25	5072.4	638	1113	36	36 21	42 27	1050 1050	30 15
89Z	114 20	5072.7	639	1113 1114	<u>-</u> 12	21	-	1177	12
90X	114.30	5073.0	- 640	1114	36	36	42	1051	30
90Y 90Z	114.35	5073.0	641	1114	J0 	21	27	1051	15
902 91X	114.40	50/3.3	041	1115	12	-		1178	12
91X 91Y	114.45	5073.6	642	1115	36	36	42	1052	30
91Z	114.42	5073.9	643	1115	-	21	27	1052	15
92X	114.50	-	-	1116	12	_	_	1179	12
92Y	114.55	5074.2	644	1116	36	36	42	1053	30
92Z	114.55	5074.5	645	1116	-	21	27	1053	15
93X	114.60		-	1117	12		_	1180	12
93Y	114.65	5074.8	646	1117	36	36	42	1054	30
93Z		5075.1	647	1117	_	21	27	1054	15
94X	114.70	_	-	1118	12	-	-	1181	12
94Y	114.75	5075.4	648	1118	36	36	42	1055	30
94Z	_	5075.7	649	1118		21	27	1055	15
95X	114.80	-	-	1119	12	-	-	1182	12
95Y	114.85	5076.0	650	1119	36	36	42	1056	30
95Z	! -	5076.3	651	1119	-	21	27	1056	15
96X	114.90	l -	-	1120	12	-	-	1183	12
96Y	114.95	5076.6	652	1120	36	36	42	1057	30
96 Z	- .	5076.9	653	1120	-	21	27	1057	15
97 X	115.00	-	-	1121	12	-	-	1184	12 30
97Y	115.05	5077.2	654	1121	36	36	42	1058 1058	15
97Z	-	5077.5	655	1121	10	21	27	1185	12
98X	115.10	-	-	1122	12 36	36	42	1059	30
98Y	115.15	5077.8	656	1122 1122	30	21	27	1059	15
98Z	115 00	5078.1	657	1123	12	-	"	1186	12
99X	115.20	5078.4	658	1123	36	36	42	1060	30
99Y	115.25	5078.7	659	1123		21	27	1060	15
99Z 100X	115.30	50/8./	009	1124	12	-	-	1187	12
100X 100Y	115.35	5079.0	660	1124	36	36	42	1061	30
1007 100Z	115.55	5079.3	661	1124	_	21	27	1061	15
101X	115.40			1125	12	_	_	1188	12
101X	115.45	5079.6	662	1125	36	36	42	1062	30
101Z	-	5079.9	663	1125	-	21	27	1062	15
1012 102X	115.50	-	-	1126	12	-	-	1189	12
102X	115.55	5080.2	664	1126	36	36	42	1063	30
102Z	-	5080.5	665	1126	-	21	27	1063	15
103X	115.60	-	-	1127	12	-	-	1190	12

-				T					
	CHANNEL	DME PARAMETERS							
CHANNEL PAIRING			11	TERROGATION			RE	PLY	
	1	MLS			PUL	SE COD			
	VHF	ANGLE	MLS			DME /P	MODE		PULSE
DME	FREQ.	FREQ.	СН	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μS
103Y	115.65	5080.8	666	1127	36	36	42	1064	30
103Z	-	5081.1	667	1127	-	21	27	1064	15
104X	115.70		-	1128	12	-	-	1191	12
104Y	115.75	5051.4	658	1128	36	36	42	1065	30
104Z	115 00	5081.7	669	1128	-	21	27	1065	15
105X	115.80	-	670	1129	12	-	-	1192	12
105Y 105Z	115.85	5082.0	670	1129	36	36	42	1066	30
105Z 106X	115.90	5082.3	671	1129	10	21	27	1066	15
106 X	115.95	5082.6	672	1130 1130	12 36	26	-	1193	12
106 Z	113.95	5082.9	673	1130	30	36 21	42	1067	30
107X	116.00	3002.9	0/3	1131	12	21	27	1067 1194	15 12
107 X	116.05	5083.2	674	1131	36	36	42	1068	30
107Z	_	5083.5	675	1131	-	21	27	1068	15
108X	116.10	-	_	1132	12			1195	12
108Y	116.15	5083.8	676	1132	36	36	42	1069	30
108Z	_	5084.1	677	1132	_	21	27	1069	15
109X	116.20	-	_	1133	12	_	_	1196	12
109Y	116.25	5084.4	678	1133	36	36	42	1070	30
109Z	-	5084.7	679	1133	-	21	27	1070	15
110X	116.30	-	-	1134	12	-	-	1197	12
110Y	116.35	5085.0	680	1134	36	36	42	1071	30
110Z	116 40	5085.3	681	1134	-	21	27	1071	15
111X	116.40	-		1135	12	-	-	1198	12
111Y 111Z	116.45	5085.6	682	1135	36	36	42	1072	30
1112 112X	116.50	5085.9	683	1135	10	21	27	1072	15
112Y	116.55	5086.2	- 684	1136 1136	12 36	26	72	1199	12
112Z		5086.5	685	1136	- J	36 21	42 27	1073 1073	30 15
113X	116.60		-	1137	12	~1	-	1200	12
113Y	116.65	5086.8	686	1137	36	36	42	1074	30
113Z	_	5087.1	687	1137	-	21	27	1074	15
114X	116.70	_	_	1138	12	_	-	1201	12
114Y	116.75	5087.4	688	1138	36	36	42	1075	30
114Z	-	5087.7	689	1138	_	21	27	1075	15
115X	116.80	_	-	1139	12	-	-	1202	12
115Y	116.85	5088.0	690	1139	36	36	42	1076	30
115Z	-	5088.3	691	1139	-	21	27	1076	15
116X	116.90	-	-	1140	12	-	-	1203	12
116Y	116.95	5088.6	692	1140	36	36	42	1077	30
116Z	-	5088.9	693	1140	-	21	27	1077	15
117X	117.00	_		1141	12	-	-	1204	12

			ME PA	RAMETE	RS				
CHANNEL PAIRING			INTERROGATION REPLY					PLY	
					PULSE CODES				
	VHF	MLS ANGLE	MLS			DME/P	MODE		PULSE
DME	FREQ.	FREQ.	CH	FREQ.	DME/N	IA	FA	FREQ.	CODES
No.	MHz	MHz	No.	MHz	μs	μs	μs	MHz	μς
117Y	117.05	5089.2	694	1141	36	36	42	1078	30
117Z	_	5089.5	695	1141	-	21	27	1078	15
118X	117.10		_	1142	12	-	-	1205	12
118Y	117.15	5089.8	696	1142	36	36	42	1079	30
118Z	-	5090.1	697	1142	-	21	27	1079	15
119X	117.20	_	 -	1143	12	-		1206	12
119Y	117.25	5090.4	698	1143	36	36	42	1080	30
119Z	-	5090.7	699	1143	-	21	27	1080	15 12
120X	117.30	-	-	1144	12	-		1207	12
120Y	117.35	-	-	1144	36	-	-	1081	30
121X	117.40	-	-	1145	12	-	-	1208	12
121Y	117.45	-	-	1145	36	_	-	1082	30
122X	117.50	-	-	1146	12		-	1209	12
122Y	117.55	-	-	1146	36	-	-	1083	30
123X	117.60	-	-	1147	12	-	-	1210	12
123Y	117.65	-	-	1147	36	-	-	1084	30
124X	117.70	-	-	1148	12	-	-	1211	12
** 124Y	117.75	-	-	1148	36	-	-	1085	30 12
125X	117.80	-	-	1149	12	-	-	1212	
** 125Y	117.85	-	-	1149	36	-	-	1086	30 12
126X	117.90	_	-	1150	12	-	-	1213	30
** 126Y	117.95	-	-	1150	36			1087	30

^{*} These channels are reserved exclusively for national allotments.


^{**} These channels may be used for national allotments on a secondary basis. The primary reason for reserving these channels is to provide protection for the Secondary Surveillance Radar (SSR) system.

 $[\]triangledown$ 108.0 MHz is not scheduled for assignment to MLS Service. The associated DME operating channel No. 17X may be assigned to the emergency service.

APPENDIX C PFE AND CMN FILTER DEFINITIONS

GUIDANCE	CORNER FREQUENCIES (RADIANS/SEC)						
FUNCTION	WO	WI	W 2				
APPROACH AZIMUTH	0.5	0,3	10				
BACK AZIMUTH	0.5	0.3	10				
APPROACH ELEVATION	1.5	0.5	10				
FLARE	2.0	0.5	10				

Filter Definitions Table 1

Filter Definitions Figure 1

APPENDIX D - ABBREVIATIONS

ARINC Aeronautical Research Inc.

ASCII American National Standard Code for Information

Interchange

AUX Auxiliary AZ Azimuth

BATT Battery Operation Enabled

BAZ Back Azimuth

CMN Control Motion Noise

CRT Cathode Ray Tube

dB Decibel

dBc Decibel Relative To Peak Value dBm Decibel Relative To 1 Millivolt

Deg Degree

DME Distance Measurement Equipment

DMEP Precision Distance Measurement Equipment

DPSK Differential Phase Shift Keying

EL Elevation

FA Final Approach

FL Flare

GPIB General Purpose Interface Bus

Hz Hertz

IA Initial Approach

ICAO International Civil Aviation Organization

IDENT Identification

kHz Kilohertz

1 Meter

MHz Megahertz MP Multi-path

PFE Path Following Error PFN Path Following Noise

RCVR Receiver

RF Radio Frequecy

TDM Time Division Multiplex

TTL Transistor - Transistor Logic

UUT Unit Under Test

VAC Volts AC Volts DC

1-APPENDIX D Page 1/2 Jan 1/86

APPENDIX E MLS-800 TIMING SEQUENCES

1. ICAO 1981 Normal AZ Cycle

Seq 1	Time (ms)	Seq 2	Time (ms) 66.7	Seq 1	Time (ms) 145.3	Seq 2	Time (ms) 229.7
ELEVATION] 00.0	ELEVATION] ""	ELEVATION	145.5	ELEVATION	223.7
FLARE	05.6	FLARE	72.3	FLARE	150.9	FLARE	235.3
APPROACH AZIMUTH	10.9	APPROACH AZIMUTH	77.6	APPROACH AZIMUTH	156.2	AP P ROA CH AZ I MUT H	240.6
FLARE	26.8	FLARE	93.5	FLARE	172.1	FLARE	256.5
ELEVATION	32.1	ELEVATION	98.8	ELEVATION	177.4	ELEVATION	261.8
DATA	37.7	DATA	104.4	DATA	183.0	DATA	267.4
WORD #2 BACK	40.8	WORD #1	107.5	WORD #2 BACK	186.1	WORD #4	270.5
AZ I MUTH DATA	52.7	DELAY	122.6	AZ I MUTH DATA	198.0	DELAY	285.6
WORD #6	55.8	FLARE	128.2	WORD #7 ELEVATION	201.1	FLARE	291.2
FLARE	61.4	TIME	133.5	FLARE	206.7		296.5
	66.7	DELAY	139.4	TIME	212.0		
		WORD	145.3	DELAY	217.9		
				TI ME DELAY	223.8		
				AUX WORD	229.7		

1. ICAO 1981 Normal AZ Cycle (Continued)

Seq 1	Time (ms) 296.5	Seq 2	Time (ms) 380.9	Seq 1	Time (ms) 453.6	Seq 2	Time (ms) 520.3
ELEVATION		ELEVATION	300.9	ELEVATION	1 733.0	ELEVATION	320.3
	302.1		386.5		459.2		525.9
FLARE		FLARE		FLARE		FLARE	
4000000	307.4	45554	391.8		464.5		531.2
APPROACH AZIMUTH		APPROACH AZIMUTH		APPROACH AZIMUTH		APPROACH AZIMUTH	
	323.3		107.7		480.4		547.1
FLARE		FLARE		FLARE		FLARE	
ELEVATION	328.6	ELEVATION	413.0	ELEVATION	485.7	ELEVATION	552.4
ELEVALION		ELEVALION		ELEVALION		EFEANITON	
DATA	334.2	DATA	418.6	DATA	491.3	DATA	558.0
WORD #2		WORD #1		WORD #2		WORD #5	
BACK	337.3	TIME	421.7	BACK	494.4	TIME	561.1
AZIMUTH		DELAY		AZIMUTH		DELAY	
DATA	349.2	ELEVATION	436.8	DATA	506.3	ELEVATION	576.2
WORD #3				WORD #8			
ELEVATION	352.3	FLARE	442.4	ELEVATION	509.4	FLARE	581.8
	357.9		447.7		515.0		587.1
FLARE	357.9	TIME	447.7	FLARE	315.0	TIME	367.1
	363.2	DELAY	453.6		520.3	DELAY	593.0
TIME	303.2		433.0		520.5	TIME	333.0
DELAY	369.1					DELAY	598.9
TIME	*****					AUX	
DELAY	375.0					WORD	604.8
AUX							20.10
WORD	I						

2. ICAO 1981 High Rate AZ Cycle

Seq 1	Time (ms) 1 00.0	Seq 1	Time (ms) 1 64.9	Seq 1	Time (ms) 144.2	Seq 1	Time (ms) 226.8
ELEVATION	00.0	ELEVATION	04.5	ELEVATION	144.2	ELEVATION	220.0
	05.6		70.5		149.8	HYOU DATE	232.4
HIGH RATE AZIMUTH	17.5	HIGH RATE AZIMUTH	02.4	HIGH RATE AZIMUTH	161.7	HIGH RATE AZIMUTH	244.2
DATA	17.5	DATA	82.4	DATA	161.7	DATA	244.3
WORD #6	20.6	WORD #2	85.5	WORD #7	164.8	WORD #2	247.4
TIME DELAY	:	BACK AZIMUTH		TIME DELAY		BACK AZIMUTH	
TIME	23.7	HIGH RATE	97.4	TIME	167.9	HIGH RATE	259.3
DELAY	26.8	AZIMUTH	109.3	DELAY	171.0	AZIMUTH	271.2
DATA	20.0	ELEVATION	109.3	DATA	171.0	ELEVATION	2/1.2
WORD #1	29.9		114.9	WORD #4	174.1		276.8
HIGH RATE AZIMUTH		HIGH RATE AZIMUTH		HIGH RATE AZIMUTH		HIGH RATE AZIMUTH	
ELEVATION	41.8	ELEVATION	126.8	ELEVATION	186.0	ELEVATION	288.7
	47.4		132.4		191.6		294.3
HIGH RATE	1 47.4	TIME	152.4	HIGH RATE	1 191.0		234.3
AZIMUTH	59.3	DELAY	138.3	AZIMUTH	203.5		
ELEVATION		AUX WORD		ELEVATION			
	64.9	1000	144.2	TING	209.1		
				TIME DELAY			
				TIME	215.0		
				DELAY	220.9		
				AUX WORD			

2. ICAO 1981 High Rate AZ Cycle (Continued)

Seq 1	Time (ms) 1 294.3	Seq 1	Time (ms) n 376.9	Seq 1	Time (ms) 450.3	Seq 1	Time (ms) 1 515.2
ELEVATION	294.3	ELEVATION .	3/6.9	ELEVATION	450.5	ELEVATION	313.2
	299.9		382.5		455.9		520.8
HIGH RATE AZIMUTH	311.8	HIGH RATE AZIMUTH	204.4	HIGH RATE AZIMUTH	467.0	HIGH RATE AZIMUTH	500 7
DATA	311.8	DATA	394.4	DATA	467.8	DATA	532.7
WORD #3	314.9	WORD #2	397.5	WORD #8	470.9	WORD #2	535.8
TIME DELAY		BACK AZIMUTH		TI ME DELA Y		BACK AZIMUTH	
TIME	318.0	HIGH RATE	409.4	TIME	474.0	HIGH RATE	547.7
DELAY	321.1	AZIMUTH	421.3	DELAY	477.1	AZ I MUTH	559.6
DATA WORD #1		ELEVATION		DATA WORD #5		ELEVATION	
HIGH RATE	324.2	HIGH RATE	426.9	HIGH RATE	480.2	HIGH RATE	565.2
AZIMUTH	336.1	AZIMUTH	420.0	AZIMUTH	492.1	AZIMUTH	577.1
ELEVATION	336.1	ELEVATION	438.8	ELEVATION	492.1	ELEVATION	3//.1
NTOU DATE	341.7		444.4	UZAU DATE	497.7		582.7
HIGH RATE AZIMUTH		TIME DELAY		HIGH RATE AZIMUTH		TIME DELAY	
ELEVATION	353.6	L	450.3	ELEVATION	509.6	TIME	588.6
LLLVATION		• "		CELVATION		DELAY	
TIME	359.2			L	515.2	AUX	594.5
DELAY	265 1					WORD	600.4
TIME	365.1						600.4
DELAY	371.0						
AUX WORD							
WOKD	376.9						

3. ICAO 1985 Normal AZ Cycle

Seq 1	Time (ms) 00.0	Seq 2	Time (ms) 1 66.7	Seq 1	Time (ms) 145.3	Seq 2	Time (ms) 1 229.7
ELEVATION	00.0	ELEVATION	00.7	ELEVATION] 145.3	ELEVATION	229.7
FLARE	05.6	FLARE	72.3	FLARE	150.9	FLARE	235.3
APP ROA CH	10.9	APPROACH	77.6	40000000	156.2	APPROACH	240.6
AZIMUTH	26.8	AZIMUTH	93.5	APPROACH AZIMUTH	170 1	AZIMUTH	256.5
FLARE	20.8	FLARE	93.5	FLARE	172.1	FLARE	250.5
ELEVATION	32.1	ELEVATION	98.8	ELEVATION	177.4	ELEVATION	261.8
DATA	37.7	DATA	104.4		183.0	0.4.7.4	267.4
WORD #2	40.8	WORD #1	107.5	DATA WORD #2	186.1	DATA WORD #4	270.5
BACK AZIMUTH		T I ME DE LA Y	122.6	BACK AZIMUTH		ŤI ME DELAY	
DATA WORD #6	52.7	ELEVATION		TIME DELAY	198.0	ELEVATION	285.6
ELEVATION	55.8	FLARE	128.2	ELEVATION	201.1	FLARE	291.2
FLARE	61.4	TIME DELAY	133.5	FLARE	206.7		296.5
	66.7	AUX WORD	139.4	TIME	212.0		
		AD1	145.3	DELAY	217.9		
				DELAY	223.8		
				AUX WORD AD2	229.7		

3. ICAO 1985 Normal AZ Cycle (Continued)

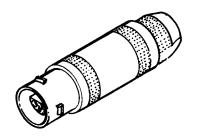
Seq 1	Time (ms)	Seq 2	Time (ms)	Seq 1	Time (ms) 453.6	Seq 2	Time (ms) 520.3
ELEVATION	296.5	ELEVATION	380.9	ELEVATION	433.0	ELEVATION]
	302.1	FLADE	386.5	FLARE	459.2	FLARE	525.9
FLARE		FLARE	201 0	TEARL	464.5	TERRE	531.2
APPROACH	307.4	APP ROACH	391.8	APPROACH AZIMUTH	404.5	APPROACH AZIMUTH] 331.2
AZIMUTH	323.3	AZIMUTH	407.7		480.4	FLARE	547.1
FLARE		FLARE		FLARE		PLAKE	552.4
ELEVATION	328.6	ELEVATION	413.0	ELEVATION	485.7	ELEVATION	352.4
	334.2		418.6		491.3		558.0
DATA WORD #2		DATA WORD #1		WORD #2		WORD #5	
BACK	337.3	TIME	421.7	BACK	494.4	T I ME	561.1
AZIMUTH	349,2	DELAY	436.8		506.3		576.2
DATA WORD #3		ELEVATION		TIME DELAY		ELEVATION	
	352.3	FLARE	442.4	ELEVATION	509.4	FLARE	581.8
	357.9		447.7		515.0		587.1
FLARE		TIME		FLARE		TIME DELAY	
TIME	363.2		453.6	<u> </u>	520.3	TIME	593.0
DELAY	369.1						598.9
TIME						AUX WORD AD4	
	375.0						604.8
DATA WORD #2 BACK AZIMUTH DATA WORD #3 ELEVATION FLARE TIME DELAY	337.3 349.2 352.3 357.9 363.2 369.1	DATA WORD #1 TIME DELAY ELEVATION FLARE	421.7 436.8 442.4 447.7	DATA WORD #2 BACK AZ IMUTH TIME DELAY	494.4 506.3 509.4	DATA WORD #5 TIME DELAY ELEVATION FLARE TIME DELAY TIME DELAY TIME DELAY AUX WORD	56 57 58 58 59

4. ICAO 1985 High Rate AZ Cycle

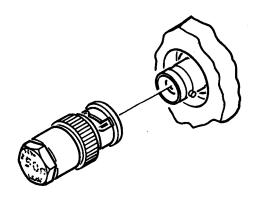
Seq 1	Time (ms)	Seq 1	Time (ms)	Seq 1	Time (ms)	Seq 1	Time (ms)
ELEVATION	00.0	ELEVATION	64.9	ELEVATION	144.2	ELEVATION	226.8
HIGH RATE AZIMUTH	05.6	HIGH RATE AZIMUTH	70.5	HIGH RATE AZIMUTH	149.8	HIGH RATE AZIMUTH	232.4
DATA WORD #6		DATA WORD #2	82.4	TI ME DELAY	161.7	DATA WORD #2	244.3
TIME DELAY	20.6	BACK AZIMUTH	85.5	TIME DELAY	164.8	BACK AZIMUTH	247.4
TIME DELAY	23.7	HIGH RATE AZIMUTH	97.4	TIME DELAY	167.9	HIGH RATE AZIMUTH	259.3
DATA WORD #1	29.9	ELEVATION	114.9	DATA WORD #4	171.0	ELEVATION	271.2
HIGH RATE AZIMUTH	41.8	HIGH RATE AZIMUTH	126.8	HIGH RATE AZIMUTH	186.0	HIGH RATE AZIMUTH	288.7
ELEVATION		ELEVATION		ELEVATION		ELEVATION	
HIGH RATE AZIMUTH	47.4	TI ME DELA Y	132.4	HIGH RATE AZIMUTH	191.6	!	294.3
ELEVATION	59.3	AUX WORD AD1	138.3	ELEVATION	203.5		
<u> </u>	64.9	<u> </u>	144.2	TIME DELAY	209.1		
				TIME	215.0		
				DELAY	220.9		

AUX WORD AD2

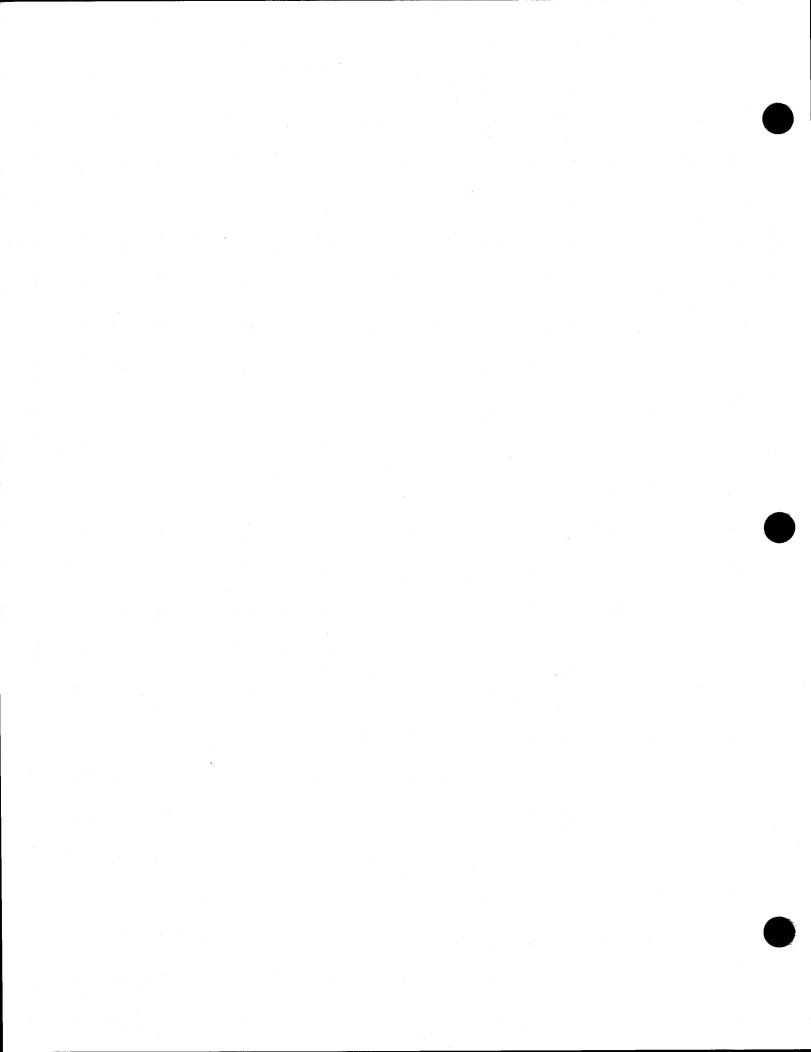
226.8



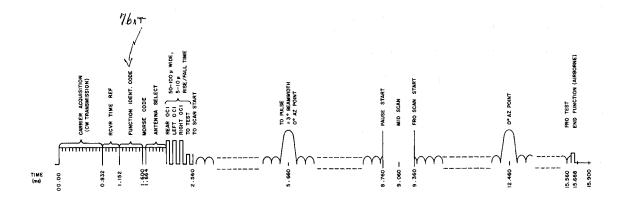
ICAO 1985 High Rate AZ Cycle (Continued)


376.9

Seq 1	Time (ms) 294.3	Seq 1	Time (ms) 376.9	Seq 1	Time (ms)	Seq 1	Time (ms)
ELEVATION	294.3	ELEVATION	376.9	ELEVATION	450.3	ELEVATION	515.2
HIGH RATE AZIMUTH	299.9	HIGH RATE AZIMUTH	382.5	HIGH RATE AZIMUTH	455.9	HIGH RATE AZIMUTH	520.8
DATA WORD #3	311.8	DATA WORD #2	394.4	TIME	467.8	DATA WORD #2	532.7
TIME DELAY	314.9	BACK AZIMUTH	397.5	TIME DELAY	470.9	BACK AZ IMUTH	535.8
TIME DELAY	318.0	HIGH RATE AZIMUTH	409.4	T I ME DELA Y	474.0	HIGH RATE AZIMUTH	547.7
DATA WORD #1	321.1	ELEVATION	421.3	DATA WORD #5	477.1	ELEVATION	559.6
HIGH RATE AZIMUTH	324.2	HIGH RATE AZIMUTH	426.9	HIGH RATE AZİMUTH	480.2	HIGH RATE AZIMUTH	565.2
ELEVATION	336.1	ELEVATION	438.8	ELEVATION	492.1	ELEVATION	577.1
HIGH RATE AZIMUTH	341.7	T I ME DELAY	444.4	HIGH RATE AZIMUTH	497.7	TI ME DELA Y	582.7
ELEVATION	353.6	_,	450.3	ELEVATION	509.6	T I ME DE L A·Y	588.6
TIME DELAY	359.2 365.1				515.2	AUX WORD AD4	594.5
TIME DELAY	371.0				1		600.4
AUX WORD AD3	376.0						


APPENDIX F AUXILIARY EQUIPMENT

429 Terminator Figure 1



 50Ω Load Figure 2

APPENDIX G MLS-800 APPROACH AZIMUTH BEAM BOARD DATA

MLS-800 Approach Azimuth Beam Modulation Data Figure 1

