

T-36C NAV/COMM RAMP and BENCH TEST SET

Operational & Maintenance Manual P/N: 90008077-2

REVISION

A	В	С	D	Е	F	G	Н	I	J	K	L	M
N	О	P	Q	R	S	Т	U	V	W	X	Y	Z

17 January 2004
For Test Sets Containing Software Revision 1.12 or greater

Tel-Instrument Electronics Corp 728 Garden Street Carlstadt, NJ 07072 (201) 933-1600 www.telinstrument.com

Leading the AVIONICS TEST industry into the 21st Century!

NOTICE:

The information contained in this manual is subject to change without notice.

Tel-Instrument Electronics Corp. makes no warranty of any kind to this material, nor shall be liable including but not limited to, for errors contained herein or for incidental or consequential damages in connection with the furnishings, performance, or use of this material.

PART NUMBER	VOLUMES INCLUDED	CHAPTERS INCLUDED	
90008077-1	VOLUME 1	CHAPTERS I & II	
90008077-2	VOLUMES 1 & 2	CHAPTERS I - VI	

Chapter I – Introduction

Chapter II – Preparation for Use and Operation

Chapter III - Theory of Operation

Chapter IV – General Maintenance and Servicing Procedures

Chapter V - Schematics

Chapter VI – Illustrated Parts Catalog

COPYRIGHT NOTICE

© 2003 Tel-Instrument Electronics Corp

Reproduction of this publication or any portion thereof by any means without the express written permission of Tel-Instrument Electronics Corp. is prohibited. For further information, contact the Customer Support Manager, 728 Garden Street, Carlstadt, NJ 07072. (201) 933-1600

VOLUME 1 OPERATIONAL PROCEDURES

T-36C TABLE OF CHANGES

Date	REV	ECO	Page	Description
2-10-03	В		All pages were affected	Overhaul of entire Manual
1-17-04	С		Chap 2 & 4	Chap 2 – Added additional Tests Chap 4 – Revised entire Calibration

Table of Contents

Cł	Chapter F			
۷٥	olume	1		
	Table	of Changes	i	
	List o	f Illustrations	vii	
	List o	f Tables…	vii	
ı	Intro	oduction		
	Sect	ion A- <u>General Information</u>		
	1.1	Scope of Manual	1-1	
	1.2	Purpose and Function of Equipment	1-2	
	1.3	Warranty	1-2	
	Sect	ion B- <u>Specifications</u>		
	1.4	Specifications	1-3	
	1.5	Abbreviations, Acronyms and Glossary Terms	1-5	
II	Prep	paration for Use and Operation		
	Sect	ion A- General Information		
	2.1	General	2-1	
	2.2	Unpacking and Inspection	2-1	
	2.3	Installation	2-1	
	Sect	ion B- Operating Controls, Indicators, and Connectors		
	2.4	General	2-2	
	2.5	Controls, Indicators, and Connectors	2-2	

Ch	apter			Page
	Section	on C- <u>Ope</u>	rating Instructions	
	2.6	General		2-4
	2.7	Battery Op	eration	2-4
		2.7.1	Battery Charging	2-4
		2.7.2	220VAC Operation	2-4
	2.8	Omni-Dire	ctional Antenna	2-5
	2.9	Keypad En	ntry	2-6
		2.9.1	Keypad Entry Instructions	2-7
		2.9.2	Stored Parameter Changes	2-8
	2.10	T-36C Typ	ical Test Displays	2-9
	2.11	General Te	est Procedures, Antenna to Antenna	2-11
		2.11.1	ILS Test Procedures	2-12
		2.11.2	GS Test Procedures	2-13
		2.11.3	LOC Test Procedures	2-15
		2.11.4	VOR Test Procedures	2-17
		2.11.5	MB Test Procedures	2-18
	2.12	Communic	ation and Transceiver Tests	2-19
		2.12.1	Modulation, Frequency, and Deviation Measurements	2-19
		2.12.2	Receiver Squelch Test	2-20
		2.12.3	Communication Test	2-20
	2.13	Enhanced	Testing Procedures	2-21
	2.14	Direct Con	nect NAV System Tests	2-20
		2.14.1	Direct Connect Nav Systems Tests	2-21
		2.14.2	MB 3 dB Bandwidth	2-22
		2.14.3	LOC Sensitivity	2-23
		2.14.4	GS Sensitivity	2-24

Chapt	er		Page
	2.14.5	ILS Sensitivity	2-24
2.15	5 Direct Co	onnect Comm Transceiver Tests	2-25
	2.15.1	Transceiver	2-25
	2.15.2	Receiver AGC Range	2-26
	2.15.3	Receiver Sensitivity	2-26
	2.15.4	Receiver Signal to Noise Ratio	2-26
	2.15.5	Transmitter Power Output	2-27
	2.15.6	Transmitter Modulation Capability	2-27
	2.15.7	Transmitter Frequency Accuracy	2-28
	2.15.8	Transmitter VSWR	2-29
2.16	Basic Pri	nciples of VOR, LOC, GS, and MB	2-29
	2.16.1	Basic ILS Principles	2-29
	2.16.2	MB Principles	2-30
	2.16.3	Basic VOR Principles	2-31
Volum	ne 2		
III Th	eory of Op	eration	
3.1	General.		3-1
3.2	Frequenc	cy Generation	3-1
3.3	COMM F	requency Synthesizer	3-3
3.4	COMM M	Modulation	3-3
3.5	СОММ Т	ransmitter Modulation and Frequency	3-4
3.6	СОММ Т	ransmitter Power and VSWR	3-5
3.7	NAV Sigr	nal Generation	3-6
3.8	VHF Sigr	nals	3-6
3.9	UHF Sigr	nals	3-6
3.1	0 Navigatio	on Modulation	3-7

Ch	apter			Page		
	3.11	Ramp Testi	ing	3-8		
	3.12	Microproce	3-9			
	3.13	Power Sup	plies	3-9		
IV General Maintenance and Servicing Instructions						
	4.1	General		4-1		
		4.1.1	Safety Precautions	4-2		
		4.1.2	Preliminary Considerations	4-3		
Se	ction A	– <u>Routine</u>	<u>Maintenance</u>			
	4.2	General		4-4		
		4.2.1	Cleaning Procedure	4-4		
		4.2.2	Inspection of all Connectors, Cables, and Test Set Assembly	4-4		
		4.2.3	Battery Check and Charging	4-5		
Se	ction B	– Test Se	et Verification and Acceptance Checks			
	4.3	General		4-6		
	4.0	4.3.1	Test Equipment Required	4-6		
		4.3.2	Test Set Initial Settings	4-7		
	4.4		and Verification	4-8		
		4.4.1	Radio Frequency Measurements	4-8		
		4.4.2	VOR Modulation Measurements	4-9		
		4.4.3	VOR Angle Verification	4-10		
		4.4.4	LOC Modulation Measurements	4-10		
		4.4.5	GS Modulation Measurements	4-11		
		4.4.6	Receiver	4-11		

Section	C – <u>Annı</u>	ual Calibration and Alignment				
4.5	General	l	4-14			
	4.5.1	Procedures	4-14			
4.6	Test Eq	uipment Required	4-15			
	4.6.1	Test Set Initial Settings	4-16			
4.7	Disasse	embly of the Test Set	4-17			
	4.7.1	Test Set Disassembly Procedures	4-17			
4.8	Annual	Calibration	4-18			
	4.8.1	Power Interlocks and Clocks	4-18			
	4.8.2	Transmitter Checks	4-19			
	4.8.3	Receiver Checks	4-26			
V Sch	ematics					
Powe T-36 MB/0 Tem Diod	T-36C Interconnect NAV/COMM Test Set (1 of 1) Power Supply PCB (1 of 1) T-36C Panel/Switch Board (1 of 4) MB/COMM Board (1 of 6) Temp Sensor (1 of 1) Diode Board (1 of 1) LOC/GS/VOR Board (1 of 5)					
VI IIIus	strated Pa	arts Breakdown, Parts List				
T-36 Fron Chas Cabl Cabl Cabl Cabl Cabl Cabl Cabl Cabl	t Panel Ass ssis Assembly e Assembly e Assembly e Assembly e Assembly e Assembly e Assembly e Assembly Assembly, Assembly,	MM Test Set sembly bly /, Panel BD/VSWR/RT/ANT/FP /, Panel BD/Antenna/FP /, Panel BD/Audio Out/FP /, Relay to Attenuator /, Panel BD/Keypad/FP /, Attenuator Control /, Panel BD/LGV BD /, LCD Display/LGV BD /, MBC BD/TX/RX /, Rec/Tone /, LGV/TX/RX Power Supply	6-2 6-4 6-6 6-9 6-11 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19 6-20 6-21 6-22 6-23 6-27 6-33			

APPENDIX

APPENDIX A, T-36C Data Sheet/Test Set Verification and Acceptance Checks	A-1
APPENDIX B. T-36C Data Sheet/Test Set Annual Calibration and Alignment	B-1

List of Illustrations (Figures)

Figu	re Title	Page
1-1	T-36C Test Set	1-1
2-1	Test Set Controls, Indicators, and Connectors	2-3
2-2	Fuse Cartridge	2-5
2-3	Omni-Directional Antenna	2-5
2-4	Keypad	2-7
2-5	Typical Displays	2-10
2-6	Basic HIS/CDI Indicator	2-11
2-7	On Course Aircraft	2-29
2-8	Off Course Aircraft	2-30
2-9	Typical MB Display	2-30
2-10	Typical MB Approach Parameters	2-31
2-11	VOR Phase Relationship	2-32
3-1	T-36C Configuration Chart	3-11
3-2	T-36C Simplified Block Diagram	3-12

List of Illustrations (Figures)(cont.)

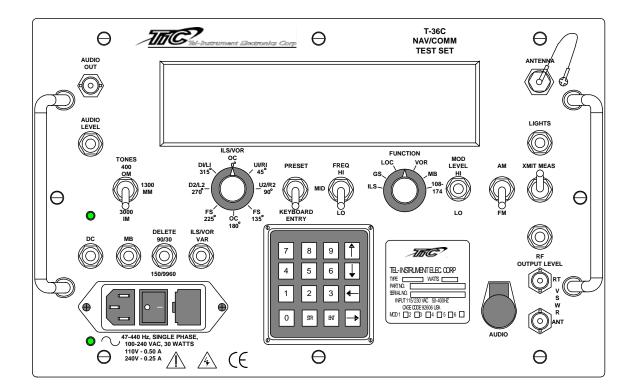
Figu	ure Title	Page
4-1	Initial Settings	4-7
4-2	Initial Settings (Annual Calibration)	4-17
4-3	A7S1	4-24
4-4	Test and Adjustment points, LGV Board	4-30
4-5	Test and Adjustment points, MB/COMM Board	4-31
4-6	est and Adjustment points, PCB Assy	4-32

List of Tables

Tabl	le Title	Page
2-1	T-36C Accessories	2-1
2-2	Controls, Indicators and Connectors	2-2
2-3	Antenna Lengths	2-6

4-1	Support Equipment	4-6
4-2	Initial Settings	4-7
4-3	Test Set Annual Calibration Equipment List	4-16
4-4	Initial Settings	4-17
4-5	Switch S1 Sections and offsets	4-24

CHAPTER I


INTRODUCTION

SECTION A

GENERAL INFORMATION

1.1 Scope of Manual

This manual provides operator guidance for the T-36C CAT III NAV/COMM Test Set, hereafter referred to as the T-36C, the Test Set, or the T/S. The T-36C is a precision VHF signal simulator, used for ramp, cockpit, or bench testing of VOR, LOC/GS (ILS), and MB NAV receivers, or VHF COMM transceivers.

T-36C Test Set

Figure 1-1

1.2 Purpose and Function of Equipment

The T-36C is a portable, rugged, user friendly instrument designed for rapid, ICAO Annex 10 CAT III precision functional testing and calibration of military and general aviation VOR, LOC/GS, MB and VHF COMM transceivers. The Test Set can be operated in either a "preset" mode for rapid simple access to preset test conditions accessible to gloved personnel for ramp/flight-line go, nogo testing, or a "keypad" mode for direct parametric entry for full function bench testing and diagnostics. Operational test flexibility is enhanced by the T-36C's ability to store three carrier frequencies and output power levels for each operating mode, and UUT connection with either a provided antenna or direct connect cable. Stored test frequencies can be pre-programmed to match unique test environments and locations. The Test Set is powered by either an internal NiCad battery or by 100-240 VAC, 47-440 Hz source. An internal battery charger is enabled whenever the Test Set is powered from external AC. All required accessories are stored in the weather resistant MIL-PRF-28800, Style C case.

1.3 Warranty¹

The Tel-Instrument Electronics Corporation warrants that each product it manufactures is free from defective material and workmanship for a period of two (2) years subject to the following terms and conditions. Tel-Instrument Electronics Corporation will remedy any such warranted defect subject to the following:

This warranty requires the unit to be delivered by the owner to Tel-Instrument intact for examination, with all transportation charges prepaid to the factory, within two (2) years from the date of sale to original purchaser. Tel-Instrument will solely determine when such defect exists.

This warranty does not extend to any of Tel products which have been subject to misuse, neglect, accident, improper installation, or used in violation of operating instructions. This warranty does not extend to units which have been repaired, calibrated, or altered in any way by a facility that is not approved, in writing, by Tel-Instrument Electronics Corp. to perform such work. This warranty does not apply to any product where the seals or serial number thereof has been removed, defaced or changed, nor to accessories not of our own manufacture.

Repair parts will be made available for a minimum period of five (5) years after the manufacture of this equipment has been discontinued.

This warranty is in lieu of all other warranties expressed or implied and all such other warranties are hereby expressly excluded. No representative or person is authorized to assume for us any other liability or warranty in connection with the sale of Tel's products.

This warranty does not cover or include batteries (batteries have a separate 90 day warranty).

Additional information with regard to the applications and maintenance of this equipment will be available from time to time.

¹ Tel Instrument Electronics Corp reserves the right to change or modify the warranty without notice.

-

SECTION B EQUIPMENT DESCRIPTION

Specifications^{2 3} 1.4

TRANSMITTER

FUNCTION	PRESET (DEFAULT) FREQUENCY	ACCURACY			
MB	74.5 – 75.5 MHz	± 150 Hz			
VOR	108.0500 – 117.9500 MHz	± 150 Hz			
Localizer (LOC)	108.1000 – 119.9500 MHz	± 150 Hz			
Glideslope (GS)	329.1500 – 335.0000 MHz	± 300 Hz			
COMM	108.0000 – 174.0000 MHz	± 150 Hz			
	Observat Constitution OF and 0.20 MHz Chara-				
	Channel Spacing in 25 and 8.33 KHz Steps				

RF CHARACTERISTICS

FUNCTION	DIRECT CONNECT	ANTENNA			
MB	-115 dBm to -25 dBm / ±1 dB	-100 to +13 dBm / ± 1 dB			
VOR	-115 dBm to -25 dBm / ±1 dB	-100 to +6 dBm / ± 1 dB			
	115 12 1 25 12 1 1 12	100 / 10 / 10			
Localizer (LOC)	-115 dBm to -25 dBm / ±1 dB	-100 to +6 dBm / ± 1 dB			
Olidaniana (OC)	11F JD t- 20 JD / 1 JD	100 to 0 dDm / 1 dD			
Glideslope (GS)	-115 dBm to -30 dBm / ±1 dB	-100 to +0 dBm / ± 1 dB			
COMM	-115 dBm to -25 dBm / ±1 dB	-100 to +0 dBm / ± 1 dB			
	100001000000000000000000000000000000000				
	Selectable in 1 dB Steps				

NAV CHARACTERISTICS

			ILS/VOR PRESETS									EYPAD ECTION
		OC	U1/R1	U2/R2	FS	OC	FS	D2/L2	D1/L1	OC	RANGE	ACCURACY
VOR	DEGREES	0°	45°	90°	135°	180°	225°	270°	315°	360°	0-360°	1º
LOC	DDM	0.000	0.046	0.093	0.200	0.000	0.200	0.093	0.046	0.000	0 to 0.200 DDM L/R	0.001 DDM
GS	DDM	0.000	0.045	0.091	0.400	0.000	0.400	0.091	0.045	0.000	0 to 0.400 DDM U/D	0.001 DDM

² Tel Instrument Corp reserves the right to change specifications without notice. ³ Standard Condition Values

Tel-instrument

1-3

MODULATION CHARACTERISTICS

FUNCTION	PRESET (DEFAULT) FREQUENCY	MODULATION RANGE	VARIABLE FREQUENCY
MB	400 Hz / ± 8 Hz	95% / ± 5%	
	1300 Hz / ± 26 Hz	95% / ± 5%	
	3000 Hz / ± 60 Hz	95% / ± 5%	
VOR	9960 & 30 Hz (0° Course)	30% / ± 0.5%	0° - 360° / 1° steps
			
Localizer (LOC)	90 & 150 Hz (On Course)	20% / ± 0.5%	0 to 200 DDM Left & Right 0.001 DDM Steps
Glideslope (GS)	90 & 150 Hz (On Course)	40% / ± 0.5%	0 to 400 DDM Up & Down 0.001 DDM Steps
COMM AM	150 & 1020 Hz	0 – 95% / ± 5%	0 to 95% 1 % Steps
COMM	1020 Hz	0 – 10 kHz / ± 1 kHz	0 to 10 kHz
FM	1020112	0 - 10 KHZ / ± 1 KHZ	1 kHz Steps
Ident	1020 Hz	10 % / ± 1%	

RECEIVER CHARACTERISTICS

FUNCTION	TOLERANCE/ACCURACY
COMM Frequency	± 8 kHz of Selected Frequency
COMM Frequency Tolerance	± 0.2 kHz
FM Deviation Range	0 – 15 kHz
FM Deviation Accuracy	± 1 kHz
Sensitivity	AM -10 dBm
(Antenna Port)	FM -30 dBm
Minimum Sensitivity Level (Direct Connect)	+36 dBm
Frequency, Modulation, & VSWR	+30 dbiii
VSWR Ratio	$1.0 - 5.0 / \pm 0.5$
Modulation Accuracy	± 5%
Power Measurement Range	0 – 14 dBW / ± 1dBW (1 – 25 Watts)
Direct Connect	$0 - 14 \text{ uDW } / \pm 1 \text{ uDW } (1 - 23 \text{ walls})$

MISCELLANEOUS SPECIFICATIONS

Size	15.5 x 9.4 x 6.5 inches	Operating Temperature	-15 to + 55° C	
Weight	19 Pounds	Input Current	0.17 Amps AC	
Case Style	MIL-PRF-28800, Style A or C	Color	Yellow	
Input Power	100 – 240 VRMS ± 10%	Power Consumption	20 Watts	
Input Power Frequency 47 – 440 Hz				
Input Power Specified – Simultaneous Battery Charging and Test Set Operation				

1.5 Abbreviations, Acronyms and Glossary Terms⁴

A/A	Air to Air		
A/A B	Air to Air Air to Air Beacon		
ac or AC	Alternating Current		
A/C	Aircraft		
A/D	Analog to Digital		
AM	Amplitude Modulation		
AGC	Automatic Gain Control		
AM	Amplitude Modulation		
ATCRBS	Air Traffic Control Radar Beacon System		
ATC	Air Traffic Control		
AUT	Aircraft under Test		
BIT	Built in Test		
CAT I, II & III	Categories of ILS Approaches		
CDI	Course Deviation Indicator		
COMM	Communications, Communication Equipment		
CW	Continuous Wave		
D/A	Digital to Analog		
DH	Decision Height		
dB	Decibel		
dBm	Decibels relative to 1 milliwatt		
dBw	dB-watts or referenced to 1 watt		
dc or DC	Direct Current		
DME	Distance Measuring Equipment		
EMI	Electromagnetic Interference		
FAA	Federal Aviation Administration		
FAR	Federal Aviation Regulation		
FD	Flight Director		
FIFO First In First Out			
FM	Frequency Modulation		
FREQ	Frequency		
ft.	Feet		
G/A	Ground to Air		
GS	Glideslope		
Hz	Hertz		
HDG	Heading		
HSI	Horizontal Situation Indicator		
IF	Intermediate Frequency		
IFF	Identify Friend or Foe		
ILS	Instrument Landing System		
IM	Inner Marker (one of three Marker Beacon signals)		
kHz	Kilohertz		
kts.	Knots		
LCD	Liquid Crystal Display		
LED	Light Emitting Diode		
_ 	g		

_

⁴ Further definitions may be found in the following reference books and documents: Helfrick, A.D. <u>Principles of Avionics</u>. Leesburg: Quality Books, 2000. RTCA/DO-181B. <u>Minimum Operational Performance Standards for Air Traffic Control RADAR Beacon System/Mode Select (ATCRBS/Mode S) Airborne Equipment.</u>
Washington D.C.: 1999. United States. Federal Aviation Administration. <u>Federal Register Fed 3</u>, 1987 FAA rules Part 91.

LOC	Localizer	
MB	Marker beacon	
MF		
MHz	Medium Frequency Megahertz	
MM		
	Middle Marker (one of three Marker beacon signals)	
NAV	Navigation, Navigational Equipment	
nmi.	Nautical mile	
ns	Nanosecond	
OBS	Omni Bearing Selector	
ОМ	Outer Marker (one of three Marker Beacon signals)	
PAM	Pulse Amplitude Modulation	
PDME	Precision Distance Measuring Equipment	
PMCS	Preventative Maintenance Checks and Services	
PPM	Pulses per Minute	
PRF	Pulse Repetition Frequency	
PW	Pulse Width	
PWR	Power	
RA	Resolution Advisories	
RF	Radio Frequency	
RMI	Radio Magnetic Indicator	
RMS	Root Mean Square	
R/T	Receiver Transmitter	
TA	Traffic Advisories	
TACAN	Tactical Air Navigation	
TCAS	Traffic Alert and Collision Avoidance System	
TX	Transmitter	
UHF	Ultra High Frequencies, 300 MHz – 3000 MHz	
VHF	Very High Frequencies, 30 MHz – 300 MHz	
VOR	VHF Omnidirectional Range	
VORTAC	VOR and TACAN (co-located)	
VSWR	Voltage Standing Wave Ratio	
WOW	Weight On Wheels	
UUT	Unit Under Test	
XPDR	Transponder	
	and a production of the contract of the contra	

CHAPTER II

PREPARATION FOR USE AND OPERATION

SECTION A

GENERAL INFORMATION

2.1 General

This section contains all necessary information on the initial unpacking, inspection, and setup of the T-36C Test Set. Each Test Set has already undergone a comprehensive series of tests, full calibration and Quality Assurance Checks before shipment from Tel-Instrument Corporation.

2.2 Unpacking and Inspection

After receiving the Test Set for the first time, ensure there is no damage to the shipping container, before opening the box. Carefully unpack the unit and save the shipping container in a safe location for subsequent shipping or extended storage.

Examine the unit for obvious signs of damage. Carefully check each switch. Connector and display before utilizing the Test Set for the first time.

If damage is found, DO NOT use the Test Set until a determination of the Test Set's condition can be assessed. Contact Tel-Instrument Corporation as soon as possible for further instructions.

Check that all the accessories that you purchased with the Test Set are accounted for. The T-36C Test Set is equipped with the following standard accessories:

NOMENCLATURE	P/N	QTY
T-36C Test Set	90 000 077	1
AC Line Cord	75 010 025	1
Direct Connect Cable Assembly	75 010 134	1
Omni Antenna	40 030 003	1
Adapter, Right Angle	48 000 013	1
Operators Manual	90 008 077-1	1
Operators And Maintenance Manual	90 008 077-2 Optional	N/A

T-36C Accessories

Table 2-1

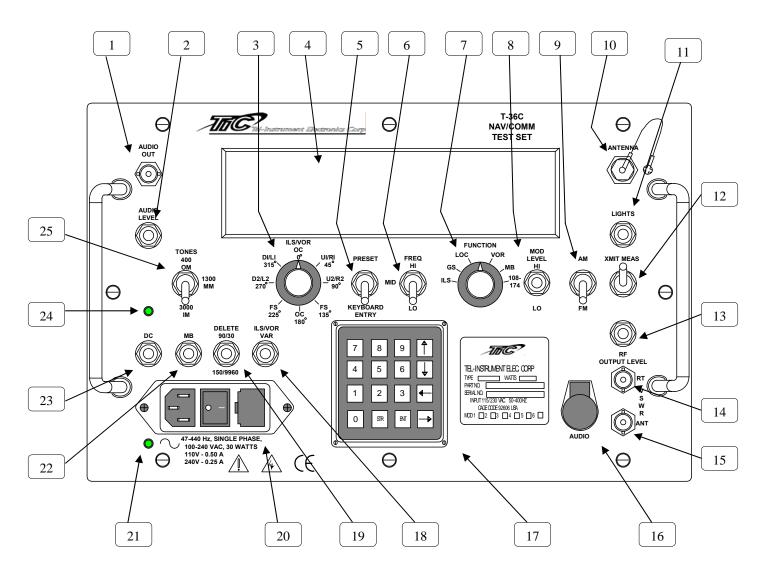
2.3 Installation

The T-36C Test Set is ready to use from the factory. There are no installation procedures applicable. The Test Set batteries were installed and fully charged before shipping.

SECTION B

OPERATING CONTROLS, INDICATORS, AND CONNECTORS

2.4 General


This section explains location and function of the operating controls, indicators and connectors. All controls, indicators, connectors are located on the front panel of the Test Set.

2.5 Controls, Indicator, and Connectors

Figure 2-1 and Table 2-2 describes and shows location for each of the T-36C Test Set controls, switches and displays.

	TABLE 2-2 Controls, Indicators, and Connectors					
	,,					
Ref	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION				
1	AUDIO OUT Connector	Calibrated audio tone providing UUT audio modulation at 1020 Hz.				
2	AUDIO LEVEL Toggle	Sets Audio Out level.				
3	ILS/VOR Rotary Switch	Used in conjunction with the FUNCTION Rotary switch. Allows selection of <i>On Course Bearing</i> information for VOR and ILS/GS/LOC <i>Offset deflection</i> .				
4	LCD Display	Provides Operator interface with Test Set functions.				
5	KEYPAD ENTRY/PRESET Toggle Switch	Selects NAV and COMM frequencies (MHz).				
6	FREQ HI/MID/LO Toggle Switch	Selects low, mid, and high frequencies. Used in conjunction with the FUNCTION Rotary Switch.				
7	FUNCTION Rotary Switch	Selects Test Set operating Modes. ILS, GS, LOC, VOR MB, and COMM Frequencies of 108.0-174.0 MHz.				
8	MOD LEVEL Toggle Switch	Sets modulation level.				
9	AM/FM Toggle Switch	Selects <i>AM</i> (Amplitude Modulation) or <i>FM</i> (Frequency Modulated) transmission signals.				
10	ANTENNA Connector	TNC Connector for ramp mode testing utilizing Omni-Antenna.				
11	LIGHTS Toggle Switch	Enables momentary or continuous background lighting for LCD Display.				
12	XMIT MEAS Toggle Switch	Selects transmission measurements display.				
13	OUTPUT LEVEL Toggle Switch	Controls RF Output Level.				
14	VSWR Connector RT	Allows Direct Connection of UUT R/T's.				
15	VSWR Connector ANT	Direct Connection connector for UUT Voltage Standing Wave Ratio.				
16	AUDIO Jack	Audio Connector to monitor COMM transmitters.				
17	KEYPAD	Utilized for direct data entry.				
18	ILS/VOR VAR Toggle Switch	Slews VOR Bearing, GS and LOC DDM.				
19	DELETE 90/150 , 30/9960 Toggle Switch	Allows the operator to delete the 90/150Hz component of the LOC/GS signals or the 30/9960 Hz component of the VOR output.				
20	FUSE and AC Power Panel	Provides connection to AC input power via the supplied cable. AC ROCKER switch to Charge Test Set battery or operation utilizing AC Power. FUSE Cartridge- provides Test Set power protection.				
21	AC Lamp Indicator	Indicates AC power is being utilized.				
22	MB/NAV ID Toggle Switch	Momentary switch providing <i>IDENT</i> , 400, 1300, or 3000 Hz simultaneous MB RF signals.				
23	DC Toggle Switch	Operates Turns Test Set ON/OFF when utilizing internal battery.				
24	DC Lamp Indicator	Power ON Indicator.				
25	TONES 400/OM, 1300/MM, 3000/IM Toggle Switch	Selects simulated Marker Beacon audio tones. 400/OM- 400 Hz/Outer Marker 1300/MM- 1300 Hz /Middle Marker 3000/IM- 3000 Hz/Inner Marker				

T-36C Test Set Controls, Indicators, and Connectors

Figure 2-1

SECTION C

OPERATING INSTRUCTIONS

2.6 General

The T-36C Test Set is capable of testing VOR/LOC/MB/GS and VHF Communications by either direct connection of the UUT or remote testing by use of the supplied Omni-Directional Antenna. Preset frequencies for quick ramp checks of NAV/COMM equipment are built-in the Test Set's memory. The operator also has the capability of manually varying a variety of frequencies, bearing, and heading information.

2.7 Battery Operation

The Test Set is factory equipped with a rechargeable Ni-Cad battery capable of operating the Test Set using a 20% Duty Cycle for up to 8 hours at 77 ° F (25°C). This represents a full day of testing on a single charge. When operating the Test Set in lower temperatures, the battery life will decrease.

Due to the Ni-Cad batteries ability to maintain a constant current level, the operator will be able to use the Test Set until the batteries are nearly depleted. By plugging the unit into an AC power source and maintaining a 20% Duty Cycle, the operator may continue to utilize the Test Set and the batteries will begin regaining their charge.

After 16 minutes of inactivity, the Test Set will automatically turn **OFF** to conserve battery strength.

It is strongly recommended that the Test set batteries be charged for a short time each week, regardless if the Test Set has been utilized or not. A completely discharged battery will require approximately 8 hours to completely recharge. Occasional charges of 8 hours on partially depleted batteries will have no adverse affects.

2.7.1 Battery Charging

Utilize the following procedures to charge the batteries:

- 1. Remove the **AC Power Cord** from the Test Set cover.
- 2. Connect the cord to a suitable 120 VAC outlet (220 VAC if configured).
- 3. Depress the **AC Rocker** switch to the "—" position. Ensure the green **AC** lamp indicator illuminates signifying that battery charging has commenced.

2.7.2 <u>220 AC Operation</u>

The T-36C may be operated using 220VAC. The following procedures are necessary before using the Test Set. Failure to properly configure the T-36C may result in severe damage to the Test Set.

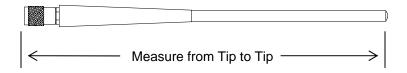
1. Remove the **FUSE Cartridge** from the **FUSE** panel located on the front panel (figure 2-2).

WARNING

Failure to configure the Test Set for 220VAC operation may result in severe damage to the Test Set and/or injury.

Fuse Cartridge

Figure 2-2


- 2. Remove and store/dispose the two fuses.
- 3. Replace the fuses with 250V/0.25A FFT fuses and reinstall the cartridge back in the panel.

2.8 Omni-Directional Antenna

Most navigation receiver checks will be performed on the ramp utilizing the supplied Omni-Antenna. The Omni-Antenna will be most effective if the operator adjusts the length for the selected frequency range. Though not necessary, the operator will notice a marked improvement in performance when adjusting to the correct length.

In order to perform ramp testing, Antenna to Antenna, perform the following steps:

- Remove the Omni-Antenna from the Test Set Cover. Connect it to the ANTENNA connector located on the front panel of the Test Set.
- 2. Use Table 2-3 and Figure 2-3 to adjust the antenna length to the frequency range that you will be testing in.

Omni Antenna

Figure 2-3

NAV FREQUENCIES			
FREQUENCY TESTED	ANTENNA LENGTH		
MB	Fully Extended		
VOR	Approx, 30 inches		
LOC	Approx, 30 inches		
GS	Approx, 20 inches		
ILS	Approx, 30 inches		

COMM FREQUENCIES		
FREQUENCY TESTED	ANTENNA LENGTH	
75 MHz	Fully Extended	
108-118 MHz	Approx, 30 inches	
118-156 MHz	Approx, 24 inches	
156-174 MHz	Approx, 20 inches	

Antenna Lengths

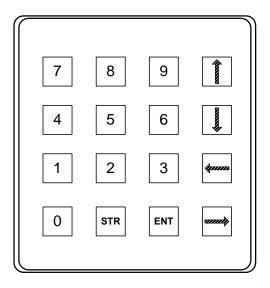
Table 2-3

3. Place the Test Set 10 to 30 ft. from the UUT antenna. Ensure a clear view without obstructions. Nearby ramp equipment or aircraft may interfere with the results. If incorrect results are observed, relocate the Test Set to a different position and retest. Most tests can be performed from within the aircraft.

2.9 Keypad Entry

The T-36C allows the operator to modify and vary numerous parameters allowing unique and more detailed tests to be performed. The flexibility of the variable parameters is sufficient enough to allow *Acceptance Level Testing*. The following parameters can be modified:

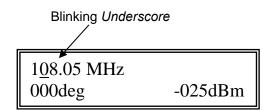
- 1. RF Frequency
- 2. RF Output Level
- 3. Audio Output Level
- 4. Modulation Level (AM or FM Deviation)


In addition to these parameters, the frequencies assigned to the LO, MID, and HI preset functions can be changed within permitted operating ranges for the function selected.

Only valid frequencies within normal bandwidths and at 25 KHz or 8.33 KHz increments can be modified.

2.9.1 Keypad Entry Instructions

Entering variable parameters utilizing the Keypad requires only that the operator select a parameter within the T-36C normal range and depress the **ENT** pad. Utilize Figure 2-4 for reference.



Keypad

Figure 2-4

To enter data, the following procedure is used:

- 1. On the Test Set front panel, toggle the **PRESET/KEYPAD** entry switch to the **KEYPAD** position.
- 2. Select the desired function utilizing the **FUNCTION** rotary switch.
- 3. The Test Set display will indicate the current frequency, RF output level, modulation level and audio output level.
- 4. A flashing *Underscore-Bar* will be displayed under the first entry position in the frequency position.

5. Enter the desired frequency by depressing the appropriate numbers on the keypad. Each time a number is selected, the *Underscore* will advance one position.

- 6. Depress the **ARROW** keypads to advance or maneuver the underscore to a different parameter.
- 7. When all values have been entered, select the **ENT** button.

In order to use the new test value, **ENT** must be pressed or a valid parameter must be entered. When all positions of the value are entered and the Test Set recognizes a valid entry, the Test Set will process the parameter with an Automatic **ENT**.

- 8. The following are exceptions that apply to the data entry process:
 - a. RF frequencies can only be varied with the keypad method.
 - b. Manually entered parameters are reset to factory defaults when a new test is selected or the Test Set is turned *OFF*.
 - c. In the **NAV** or **LOC** functions, the 10 kHz position can be varied, but the Test Set will not allow entry of invalid parameters.
 - d. GS frequencies cannot be varied as they are directly coupled to the LOC selection.

2.9.2 Stored Parameter Changes

The T-36C Test Set condition presets can be changed as desired by the operator. To enter new preset values, the following procedure should be used:

- 1. Select the FUNCTION desired and the appropriate frequency, LO/MID/HI position, desired to be changed.
- 2. Vary the displayed parameter fields with utilizing the method described in Para 2.9.1.
- 3. Press **ENT** or enter all parameter value positions to transfer the new display value into the active test value.
- 4. Press **STR** to transfer the new test value into the preset frequency LO/MID/HI register position.
- 5. The new preset value will be retained until it is changed. Test Set power *OFF/ON* cycling will not change the preset value.

6. Only legitimate frequency assignments can be entered for VOR, LOC and GS channel assignments. All other functions selected allow frequency assignments to any 100 Hz increment in the selected frequency ranges.

2.10 <u>T-36C Typical Test Displays</u>

Figure 2-5 depicts several typical displays for numerous Test Set functions. These represent only a small percentage of the possible displays that are shown when conducting tests with various types of equipment. Before utilizing the Test Set, thoroughly review this manual and the procedures necessary to properly test the desired equipment. A quick reference guide is located inside the Test Set cover and as an Appendix at the end of the manual.

Tel-Instrument T-36C Ver. 1.01 xx/xx/xx	T-36C Start-up Display. Current Software and date installed shown.
118.0000 MHz	COMM Transmitter Testing XMIT MEAS, AM
118.0000 MHz	COMM Transmitter Testing XMIT MEAS, FM
118.0000 MHz 100 mV 80% AM -063 dBm	COMM Receiver Testing 118-156 AM
118.0000 MHz 100 mV 7.5 KHz FM -063 dBm	COMM Receiver Testing 118-156, FM
75.0000 MHz -075 dBm	Marker Beacon Testing MB; OM, MM, or IM
117.95 MHz 225 Deg -075 dBm	VOR Receiver Testing VOR, 225 °
108.15 MHz 0.045 R -075 dBm	Localizer Receiver Testing LOC, U1/R1
110.15 MHz/334.25 MHz 0.045 U -075 dBm	Glideslope Receiver Testing GS, U1/R1
0.045 U 110.15 MHz 0.045 R -075 dBm	ILS System Testing

T-36C Typical Displays

Figure 2-5

2.11 General Test Procedures: Navigation, Antenna to Antenna

All of the following tests are described utilizing the T-36C Test Set. It is assumed the operator has a detailed knowledge of Avionics Systems and the UUT test requirements. Refer to Table 2-3 for correct antenna lengths for each test performed. Figure 2-6 illustrates a typical HSI/CDI indicator, utilize for reference when conducting VOR/LOC/ILS and GS Tests.

The following tests are not meant to replace the testing criteria required for your particular model of equipment. They are general testing procedures to assist the operator in properly utilizing the T-36C T/S.

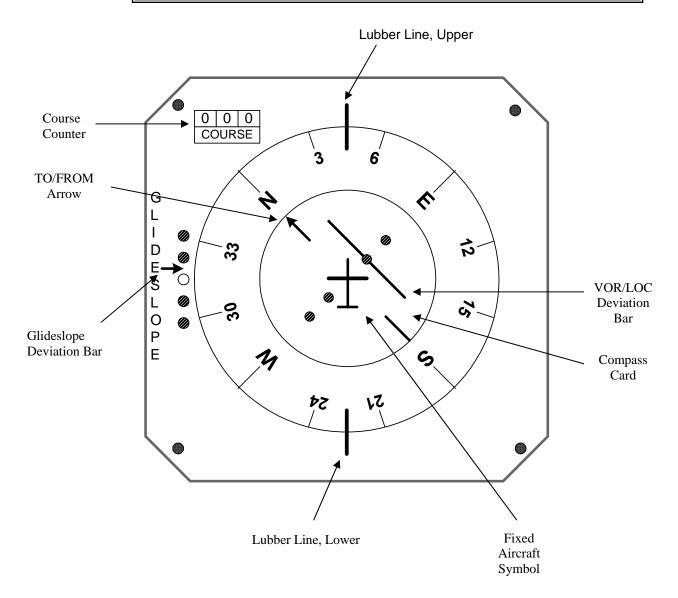
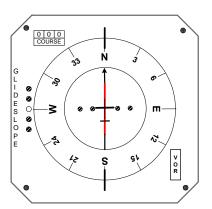


Figure 2-6
Basic HSI/CDI Indicator

2.11.1 ILS Test Procedures

WARNING


When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

- Toggle the KEYPAD ENTRY/PRESET switch to PRESET.
- 2. Extend the omni-antenna to 28½" (Top three sections retracted) and connect to the **ANTENNA** connector located on the front panel of the Test Set.
- 3. Place the **FUNCTION** rotary switch in **ILS**.
- 4. Toggle the **HI/MID/LO** switch to the **LO** position (108.01 334.70 MHz).
- 5. Turn the GS and LOC receivers *ON* in the Aircraft Under Test (AUT) and select corresponding frequencies on the aircraft panel and Test Set.
- 6. Select **OC** utilizing the **ILS/VOR** rotary switch. Observe a similar display.

0.000 OC	108.15MHz
0.000 OC 0.000 OC	000dBm
0.000 00	OOOGDIII

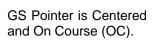
7. The Horizontal pointers on your CDI should center and any flags are retracted.

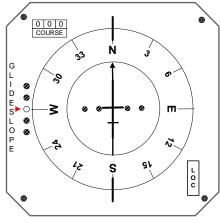
Indicator shown with Deviation Bar centered and course at 000 degrees.

8. Utilizing the **ILS/VOR VAR** toggle switch, depress *Up* and *Down* observing the deviation pointers respond to the movement of the slew switch.

Repeat the procedure using different frequencies in the spectrum.
 Similar results should be observed.

2.11.2 GS Test Procedures

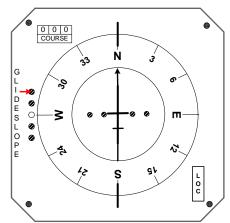

WARNING


When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

- 1. Toggle the **KEYPAD ENTRY/PRESET** switch to **PRESET**.
- 2. Extend the omni-antenna to 19" (Top five sections retracted) and connect to the **ANTENNA** connector on the front panel of the Test Set.
- 3. Place the **FUNCTION** rotary switch in **GS**.
- 4. Toggle the **HI/MID/LO** switch to the **LO** position (334.70 MHz).
- 5. Turn the AUT GS receiver *ON* and select corresponding frequencies on the Test Set and aircraft.
- 6. Select **OC** utilizing the **ILS/VOR** rotary switch.

108.15MHz / 334.55MHz 0.000 OC 000 dBm

7. Verify the aircraft CDI deviation pointer is centered and no flags present.



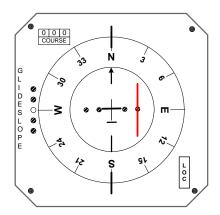
8. Vary the **ILS/VOR** to **U1/R1**. The GS deviation pointer should indicate a one-dot deflection *UP*.

9. Vary the **ILS/VOR** to **U2/R2**. The GS deviation pointer should indicate a two-dot deflection *UP*.

GS Pointer indicates full Two-Dot *UP* Deflection

- Vary the ILS/VOR to D1/L1. The GS deviation pointer should indicate a one-dot deflection DOWN.
- 11. Vary the **ILS/VOR** to **D1/L1**. The GS deviation pointer should indicate a two-dot deflection *DOWN*.
- 12. Return the **ILS/VOR** rotary knob to **OC**.
- 13. Momentarily toggle the **DELETE- 90/30 150/9960** switch to **90**. Observe a full *UP* deflection on the GS Pointer. Flag should be visible.
- 14. Momentarily toggle the **DELETE- 90/30 150/9960** switch to**150**. Observe a full *DOWN* deflection on the GS Pointer. Flag should be visible.
- 15. Repeat the procedure using different frequencies in the spectrum. Similar results should be observed.

2.11.3 LOC Test Procedures

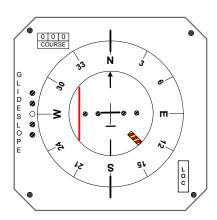

WARNING

When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

- Toggle the KEYPAD ENTRY/PRESET switch to PRESET.
- 2. Extend the omni-antenna to 28½" (top three sections retracted) and connect to the **ANTENNA** connector on the front panel of the Test Set.
- 3. Place the **FUNCTION** rotary switch in **LOC**.
- 4. Toggle the **HI/MID/LO** switch to the **LO** position (108.01MHz).
- 5. Turn the LOC receiver *ON* in the AUT and select corresponding frequencies on the aircraft panel and Test Set.
- 6. Select **OC** utilizing the **ILS/VOR** rotary switch. Observe a similar display as shown below.

- 7. The CDI deviation bar should center with no flags present.
- 8. Select **U1/R1** utilizing the **ILS/VOR** rotary switch. The LOC deviation bar should indicate a one-dot deflection to the right.
- 9. Select **U2/R2** utilizing the **ILS/VOR** rotary switch. The LOC deviation bar should indicate a two-dot deflection to the right.

Indicator represents LOC Two Dots right of course



10. Select **D1/L1** utilizing the **ILS/VOR** rotary switch. The LOC deviation bar should indicate a one-dot deflection to the left.

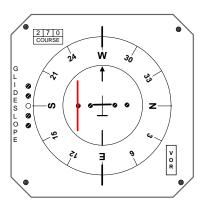
- 11. Select **D2/L2** utilizing the **ILS/VOR** rotary switch. The LOC deviation bar should indicate a two-dot deflection to the left.
- 12. Return the **ILS/VOR** rotary knob to **OC**.
- 13. Momentarily toggle the **DELETE- 90/30 150/9960** switch to **90**. Observe a full *LEFT* deflection on the LOC Deviation Bar. Corresponding flag should be visible (see next page).
- 14. Momentarily toggle the **DELETE- 90/30 150/9960** switch to**150**. Observe a full *RIGHT* deflection on the LOC Deviation Bar. Corresponding flag should be visible.

Indicator indicates Full Left Deflection and Flag visible. LOC **DELETE 90 ~** switch pressed.

15. Repeat the procedure using different frequencies in the spectrum. Similar results should be observed.

2.11.4 VOR Test Procedures

WARNING


When conducting tests with the aircrafts autopilot engaged, any variation of the aircrafts controls may move the associated control services. Use caution to ensure that all personnel and ground support equipment are clear of the control services.

- 1. Toggle the **KEYPAD ENTRY/PRESET** switch to **PRESET**.
- 2. Extend the omni-antenna to 28½" (top three sections collapsed) and connect to the **ANTENNA** connector on the front panel of the Test Set.
- 3. Place the **FUNCTION** rotary switch in **VOR** and the **ILS/VOR** rotary switch to **OC**.
- 4. Toggle the **HI/MID/LO** switch to the **LO** position (108.05MHz).
- 5. Turn the VOR receiver *ON* in the AUT and select corresponding frequencies on the aircraft panel and Test Set.
- 6. Observe the following display.

108.05MHz 000 deg +006 dBm

- 7. Utilizing the **RF OUTPUT LEVEL** toggle switch, reduce the preset power to -47dBm.
- 8. Turn the **ILS/VOR** rotary switch through each position and observe that the corresponding bearings (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°) are displayed on the VOR indicator.

Indicator represents VOR variable fully CCW (2 Dots Left) and course at 270°

9. Utilize the **ILS/VOR VAR** toggle switch and vary the bearing with the VOR deviation bar centered. Ensure the Deviation Bar tracks smoothly left and right of the centered position.

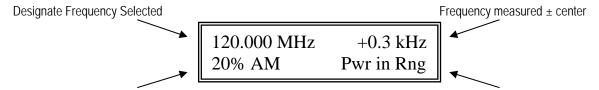
- 10. Return the **ILS/VOR** rotary knob to **OC**.
- 11. Delete either the 30 or 9960 Hz component using the **DELETE** toggle switch. The Deviation Bar should deflect full scale from the center and the warning flag should appear.
- 12. Release the toggle switch and observe a centered bar and no flag.
- 13. Offset the Test Set frequency by ±50KHz by utilizing the instructions in Paragraph 2.9.1.
- 14. Verify the appropriate failure flag appears.

2.11.5 MB Test Procedures

- 1. Select **MB** using the **FUNCTION** rotary switch.
- 2. Extend the antenna to its fullest length and attach it to the **ANTENNA** connector located on the Test Set front panel.
- 3. Toggle the **PRESET/KEYBOARD ENTRY** switch to the **PRESET** position.
- 4. Toggle the **LO/MID/HI** switch to the **MID** position (75MHz).
- Set the RF Output to +13dBm using the RF OUTPUT LEVEL toggle switch.
- 6. Select **400/OM** using the **TONES** toggle switch.
- 7. Verify the *BLUE* Marker Lamp for the Outer MB illuminates on the aircraft instrument panel. Ensure a 400 Hz tone is audible from the speaker or intercom system (if applicable).
- 8. Select **1300/MM** using the **TONES** toggle switch.
- 9. Verify the *AMBER* Marker Lamp for the Middle MB illuminates on the aircraft instrument panel. Ensure a 1300 Hz tone is audible from the speaker or intercom system (if applicable).
- 10. Select **3000/IM** using the **TONES** toggle switch.
- 11. Verify the *WHITE* Marker Lamp for the Inner MB illuminates on the aircraft instrument panel. Ensure a 3000 Hz tone is audible from the speaker or intercom system (if applicable).

2.12 Communications and Transceiver Tests

The following tests for Communication equipment are described with the use of the Test Set antenna and include preset parameters to rapidly determine the state of the equipment being tested. These tests are best performed with two technicians, one located in the aircraft under test, the other operating the Test Set and controls. When conducting antenna-to-antenna checks, ensure that you properly extend the antenna to the correct length IAW Table 2-3.


The following tests are not meant to replace the testing criteria required for your particular model of equipment. They are general testing procedures to assist the operator in properly utilizing the T-36C T/S.

2.12.1 Modulation, Frequency, and Deviation Measurements

The T-36C is capable of conducting Modulation, Frequency, and Deviation measurements Antenna to Antenna. The following procedures will ensure that the received results are accurate.

 For best results, follow the procedures as listed in the previous paragraph (2.8). Turn the Test Set ON and ensure the Test Set passes the Self Test. Select the frequency on the UUT, and select the corresponding frequency on the Test Set. Key the transmitter to be tested and at the same time, hold DOWN the XMIT – MEAS switch and observe the following displays:

Making Transmitter Measurements . . .

% of AM Modulation Measured (FM would indicate deviation)

Signal acquired was in Range of Test Set

- 2. Release the **XMIT MEAS** switch once the measurement is completed.
- 3. If the acquired signal strength too low or high, the following may be displayed:

Power Too High Low Power No Power

4. Move the Test Set to a different location to receive the "**Pwr in Rng**" display. This will ensure accurate measurements.

The following tests are not meant to replace the testing criteria required for your particular model of equipment. They are general testing procedures to assist the operator in properly utilizing the T-36C T/S.

2.12.2 Receiver Squelch Test

- 1. Select **108-174** using the **FUNCTION** rotary switch.
- 2. Toggle the **HI/MID/LO** toggle position in the **LO** position.
- 3. Turn the T/S *ON* and the preset values of 108.000 MHz, 10% modulation at 0 dBm will be displayed.
- 4. Turn *ON* the AUT VHF COMM equipment, set to the corresponding frequency and adjust the audio to a normal listening level.
- 5. The Test Set will transmit a 1020 Hz signal, which should be audible in the aircraft headset.
- 6. Reduce the Test Set RF output level by toggling the **RF OUTPUT** toggle switch until the cockpit audio is not heard (squelched).
- 7. Slowly increase the RF output by 6 dB. The audio should return and be heard on the headset.
- 8. Repeat the steps in each position of the **HI/MID/LO** toggle switch.

2.12.3 Communication Test

- 1. Select **108-174** using the **FUNCTION** rotary switch.
- 2. Toggle the **HI/MID/LO** toggle position in the **MID** position.
- 3. Turn the T/S *ON* and the preset values of 113.000 MHz, 10% modulation at 0 dBm will be displayed.
- 4. Turn *ON* the aircraft under test VHF COMM equipment, set to the corresponding frequency and adjust the audio to a normal listening level.
- 5. Connect a set of headphones to the **AUDIO** jack on the Test Set front panel.
- 6. Key the transmitter in the AUT and speak in a moderate tone.
- 7. While transmitting from the aircraft, toggle down the **XMIT MEAS** switch and monitor the transmission from the aircraft.
- Repeat the procedure for each frequency range or manually select a frequency by placing the PRESET/KEYBOARD ENTRY switch in the KEYBOARD ENTRY position. The operator may now select any legal frequency within the Test Set capabilities for testing.

The following tests are not meant to replace the testing criteria required for your particular model of equipment. They are general testing procedures to assist the operator in properly utilizing the T-36C T/S.

2.13 Enhanced Testing Procedures

The T-36C provides all the necessary signals for Bench Top Checks of Navigation and Communication Equipment (within its frequency range). The flexibility and enhanced testing that can be performed with the T-36C by varying the preset test parameters is sufficient to permit acceptance testing and diagnostic capability of the various sensors covered. It is not the purpose here to define all test variations and enhancements that can be achieved, but to establish some concept of the possibilities. As an example, receiver selectivity of COMM receivers can be tested by varying the T-36C output frequency on a desired channel and then varying the Test Set RF output level to establish signal-to-noise ratios, AGC levels, or recovered audio output of the UUT to determine selectivity.

In order to perform these tests, it is necessary to disconnect the omni-directional antenna and utilize the supplied Direct Connect Cable. Connect the UUT Antenna output to the **VSWR RT** or **ANT** connectors located on the front panel of the Test Set. The following guidelines will assist the operator when enhanced testing is required.

WARNING

Ensure the Transmitter does not exceed 25 Watts before Direct Connect Transceiver Checks are commenced.

All transceiver measurements should be made quickly to minimize heating of the Test Set dummy Load.

2.14 <u>DIRECT CONNECT NAV SYSTEMS TESTS</u>

Utilize the following procedures as a guide in making Direct Connect Navigation Checks. Please refer to your Maintenance Manual to provide exact parameter and conditions.

2.14.1 MB Sensitivity

Connect the 10K termination adapter to the antenna port. Connect **RT** Port to NAV/COM Receiver antenna input using a 50Ω coaxial cable for all ILS NAV functions.

- 1. Turn on the aircraft **MB** receiving equipment. Set the HI/LOW switch to **HI** position.
- Set Test Set FUNCTION knob to MB.
- Set the KEYPAD ENTRY/PRESET toggle switch to PRESET.

- 4. Set the **FREQ LO/MID/HI** switch to the **MID** position (75.00 MHz).
- 5. Set the **MB TONES** knob to **400 Hz**.
- Starting at RF output level of -25 dBm, gradually reduce the RF OUTPUT LEVEL with the RF OUTPUT LEVEL slew switch until blue lamp goes out. Read RF level.

This level should be less than the minimum sensitivity specified in the MB receiver documentation.

- 7. Repeat Step 6 for each additional tone.
- 8. The UUT marker lamps should all go out at approximately the same RF signal level for all three tones.
- 9. Increase the RF output level by 30 dB above the highest RF level read in Step 6.

If the sensitivity level is > - 55 dBm, set RF output level to the following formula:

- 10. Set the TONES knob to 400 (OM). The blue (outer) marker lamp on the aircraft instrument panel should light and a 400 Hz tone should be audible from the cabin speaker (if applicable).
- 11. Repeat Step 10 for each tone (1300 MM) amber lamp, (3000 IM) white lamp.
- 12. Set the MB HI/LOW switch to LOW sensitivity. Repeat steps 1. through

2.14.2 MB 3 dB Bandwidth

- 1. Turn on aircraft MB receiver, and Test Set.
- 2. Set FREQ using the **KEYPAD** to 75.0 MHz, and the tones switch to 400.
- 3. Adjust RF output levels to 3 dB above the Receiver Sensitivity Level identified in Step 2.14.1.
- Decrease the frequency in 10 kHz steps starting at 75.0 MHz until 400 (OM) blue lamp comes on (this is the low end selectivity of the MB receiver).

5. Repeat Steps 1-4 increasing the frequency in 10 KHz steps starting at 75.02 MHz until 400 (OM) blue lamp comes on (this is the high end Sensitivity Level of the MB receiver).

6. The bandwidth is the difference between the two threshold frequencies.

2.14.3 LOC Sensitivity

- 1. Set the Test Set KEYPAD ENTRY/PRESET toggle switch to PRESET.
- 2. Set the **FREQ LO/MID/HI** select switch to **LO** (108.10 MHz).
- Turn on the aircraft Localizer receivers and select this frequency on the aircraft NAV panel.
- 4. Set the Test Set **FUNCTION** knob to **LOC**.
- 5. Starting at RF output signal level of -25 dBm, gradually reduce the RF OUTPUT LEVEL with the RF OUTPUT LEVEL slew switch. The UUT CDI flag should appear for each LOC receiver at approximately the same RF signal level. Increase the RF output level by 30 dB for subsequent tests.

NOTE

If the sensitivity level is > - 55 dBm, set RF output level to the following formula:

- Set the ILS/VOR knob to OC. The CDI should center and the indicator flag should be retracted.
- 7. Set ILS/VOR knob to U1/R1. The CDI should deflect one-dot to the right.
- 8. Turn the **ILS/VOR** knob to **U2/R2**. The CDI should deflect two-dots to the right.
- 9. Repeat this process for ILS/VOR knob positions D1/L1 and D2/L2. The CDI should deflect one and two dot positions to the left. Momentarily disable the 90 Hz modulation component by selecting DELETE 90. The CDI should indicate full left and the flag should be visible.
- Momentarily disable the 150 MHz modulation component by selecting DELETE 150. The CDI should indicate full right and the flag should be visible.
- 11. Repeat steps 5-11 at the other LO/MED/HI positions of the **FREQ** select switch. Similar LOC system test results should be observed.

2.14.4 GS Sensitivity

- 1. Set the Test Set **KEYPAD ENTRY/PRESET** toggle switch to **PRESET**.
- Set FREQ LO/MID/HI select switch to LO (334.70 MHz).
- 3. Turn on the aircraft Glide Slope receivers and select this frequency on the aircraft NAV panel.
- 4. Set the **FUNCTION** knob to **GS**.
- 5. Starting at RF output level of -30 dBm, gradually reduce the RF OUTPUT LEVEL with the RF OUTPUT LEVEL slew switch. The UUT CDI flag should appear for each GS receiver frequency at approximately the same RF signal level. Increase the RF output level by 30 dB for subsequent tests.

If the sensitivity level is > - 55 dBm, set RF output level to the following formula:

- 6. Set the **ILS/VOR** knob to **OC**. The horizontal pointer should indicate a center glide path position and the flag should be retracted.
- 7. Set **ILS/VOR** knob to **U1/R1**. The horizontal pointer should indicate an one-dot up deflection.
- 8. Set the **ILS/VOR** knob to **U2/R2**. The horizontal pointer should indicate show a two-dot up deflection.
- 9. Set **ILS/VOR** knob to **D1/L1**. Horizontal pointer should show an one-dot down deflection. Turn the **ILS/VOR** knob to **D2/L2**. Horizontal pointer should show a two-dot down deflection.
- Momentarily disable the 90 Hz modulation component by selecting DELETE 90. The horizontal pointer should indicate a full up glide path and the flag should be visible.
- 11. Momentarily disable the 150 Hz modulation component by selecting **DELETE 150**. The horizontal pointer should indicate full down glide path and the flag should be visible.
- 12. Repeat steps 5-11 at the other LO/MID/HI positions of the **FREQ** select switch. Similar GS system test results should be observed.

2.14.5 ILS Sensitivity

Set the Test Set KEYPAD ENTRY/PRESET toggle switch to PRESET.

- Set FREQ select switch to LO, MID, or HI.
- 3. Turn on the aircraft Localizer and Glide Slope receivers and select the test frequencies on the aircraft NAV panel.
- Set the Test Set FUNCTION knob to ILS.

5. Starting at RF output level of -30 dBm, gradually reduce the RF OUTPUT LEVEL with the RF OUTPUT LEVEL slew switch. The UUT CDI flags should appear for each ILS receiver frequency at approximately the same RF signal level. Increase the RF output level by 30 dB for subsequent tests.

If the sensitivity level is > - 55 dBm, set RF output level to the following formula:

- 6. Set the **ILS/VOR** knob to **OC**. The CDI and horizontal pointers should center and both flags should be retracted.
- 7. Using the **ILS/VOR VAR** slew switch, depress the switch up, then down, following the on screen data. The CDI should move from the left two-dot position to the right two-dot position in response to the movement of the slew switch. Simultaneously, the horizontal pointer should move from the down two-dot position to the up two-dot position.
- 8. Repeat steps 5-8 at the other **LO/MID/HI** positions of the **FREQ** select switch. Similar ILS system test results should be observed.

2.15 DIRECT CONNECT COMM TRANSCEIVER TESTS

Utilize the following procedures as a guide in making Direct Connect Transceiver Checks. Please refer to your Maintenance Manual to provide exact parameter and conditions.

2.15.1 Transceiver Test

- Attach the 10K termination adapter to the ANTENNA connector of the Test Set.
- Connect the T-36C RT connector to the RF output connector of the UUT using the 10 foot, 50 ohm co-axial cable supplied with the Test Set.
- Connect the UUT antenna to the ANT port of the Test Set if the VSWR check is to be conducted.
- Connect an audio generator or the Test Set AUDIO connector to the microphone input connector of the UUT.

5. Connect an oscilloscope to the UUT headphone connector.

All measurements should be made quickly to minimize heating of the Test Set internal dummy load.

2.15.2 Receiver AGC Range

- 1. Select desired UUT frequency. Set Test Set AM modulation to 1000 Hz, 30%.
- Adjust UUT audio gain control to Maximum.
- 3. Reduce UUT audio gain control to ½ of P-P value on oscilloscope.
- 4. Reduce test set RF until oscilloscope signal is at Step 2 level x 0.707 (this is receiver's low AGC level).
- 5. Increase test set RF until oscilloscope signal is at Step 2 level X 1.414 (this is the receiver's high AGC level).

2.15.3 Receiver Sensitivity

- 1. Adjust test set RF level to low AGC level as indicated in Step 2.15.2.
- 2. Reduce modulation to 0%.
- Read P-P value of noise level on oscilloscope at the UUT headphone connector.
- 4. Turn modulation on 1000 Hz/30%. **AM/FM** Switch to **AM**.
- 5. Adjust RF level until modulation P-P level is 2X P-P value of noise in Step 3. The RF level at this point is the receiver sensitivity level.

2.15.4 Receiver Signal To Noise Ratio

- 1. Set the UUT channel frequency to the selected Test Set RF output frequency.
- Select the Test Set modulating frequency of 1000 Hz with the TONES knob @ 30% modulation.
- 3. Adjust the Test Set RF OUTPUT LEVEL to –67 dBm and connect to the RF output connector of the UUT.
- 4. Adjust the UUT audio level control to obtain an audio output signal about ½ of the receiver's rated maximum output level.

- 5. Using an oscilloscope, measure the audio output P-P level (signal level).
- 6. Remove the 1000 Hz modulation by slewing the MOD LEVEL to 0%.
- 7. Using an oscilloscope measure the drop in audio output P-P level (noise level).

8. Signal-to-noise level equals 20 log (signal level) / (noise level). This is the signal-to-noise level of the receiver.

2.15.5 Transmitter Power Output

WARNING

Ensure the Transmitter does not exceed 25 Watts before Direct Connect Transceiver Checks are commenced.

- 1. Verify that the Test Set is set for the same frequency as the UUT.
- 2. Key the UUT transmitter.
- 3. Read the transmitter output power as indicated on the Test Set display.

2.15.6 Transmitter Modulation Capability

- 1. Connect the T-36C RT connector to the RF output connector of the UUT using a 10 foot, 50 ohm coaxial cable supplied with the Test Set.
- 2. Connect audio generator or the Test Set **AUDIO** connector to microphone input connector of the UUT.
- 3. Adjust output of audio generator or Test Set AUDIO output to 1000 Hz. 30% modulation, as measured at the output of the UUT.
- 4. Key the transmitter.
- 5. Read the measured percentage of modulation as indicated by the T-36C display.
- Set AM/FM toggle switch of Test Set to FM (if function is available on UUT).
- 7. Set UUT for FM Modulation.
- 8. Key the transmitter.
- Read the measured deviation.

2.15.7 Transmitter Frequency Accuracy

- 1. With the test set up connected as per 2.15.6.
- 2. Key the transmitter.
- 3. Read the deviation in frequency from nominal as indicated by the T-36C display.

2.15.8 Transmitter VSWR

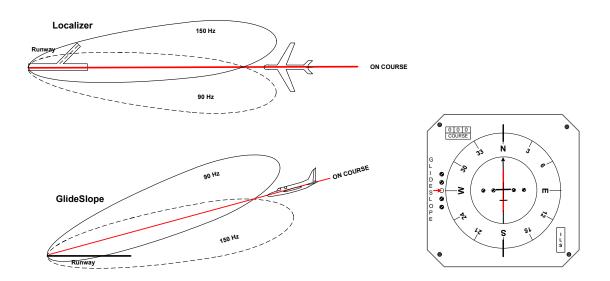
- 1. Connect the T-36C RT connector to the RF output connector of the UUT using a 10 foot, 50 ohm coaxial cable supplied with the Test Set.
- 2. Connect UUT antenna to the **ANT** port of the Test Set.
- 3. Key the transmitter.
- 4. While depressing the XMIT MEAS switch on the Test Set, note the VSWR reading displayed on the T-36C display.

2.16 Basic Principles of VOR, LOC, GS, and MB

2.16.1 Basic ILS Principles

ILS (Instrument Landing System) was introduced in the 1930's. The system consists of antennas and transmitters located at the end of the runway at centerline, providing horizontal, vertical, and distance guidance. The system is broken down into: LOC-horizontal control (left & right), GS- vertical control (up & down), and MB- distance control.

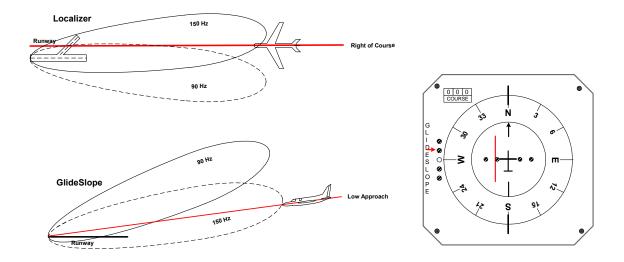
The localizer transmitter utilizing the VHF navigation band from 108.10 – 111.95 MHz provides horizontal guidance (LOC), using every odd 100 KHz position.


The vertical transmitter utilizing the UHF navigation band from 329.15 – 335.00 MHz provides the vertical guidance (GS).

The LOC and GS Frequencies are typically paired; where as- when you select the appropriate LOC frequency, the ILS receiver will automatically select the paired GS frequency.

MB transmitters, transmit on a frequency of 75 MHz, and are not paired with the ILS receiver.

Both the LOC and GS Transmitters transmit a carrier modulated RF with 90 and 150 Hz signals. When an aircraft is receiving the signals and is receiving equal amounts of the 90 and 150 Hz modulation, the aircraft is "On Course", as depicted in Figure 2-7.


If the aircraft is receiving a percentage of modulation greater than the other, the receiver will display an offset either Left/Right or Above/Below "On Course", as shown in Fig. 2-8.

Illustrates an "On Course" aircraft, receiving equal amounts of 90 and 150 Hz modulation.

Figure 2-7

Illustrates an aircraft receiving a higher percentage of LOC 150 Hz modulation, and GS 90 Hz modulation. The Indicator will reflect left and above "On Course" when flying "TO" the VOR station.

Figure 2-8

2.16.2 Marker Beacon

The MB provides distance to the airport runway. There are normally three transmitters, Outer Marker, Middle Marker and Inner Marker. All three transmit at 75 MHz, modulated at different frequencies for identification. The Inner marker is modulated at 3000 Hz, Middle at 1300 Hz, and the Outer at 400 Hz. As the aircraft flies over the transmitters, located at the approach end of the runway, the MB receiver will receive the signal and dependent on the modulation (Figure 2-10), illuminate the appropriate light on the panel (Figure 2-9).

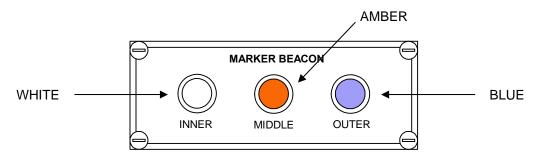
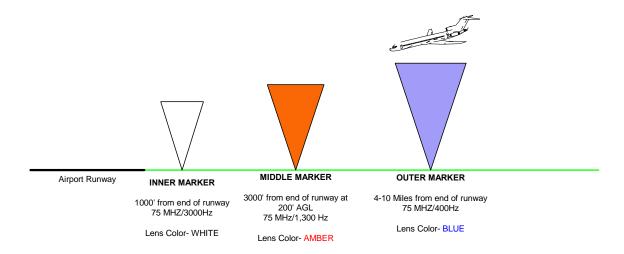



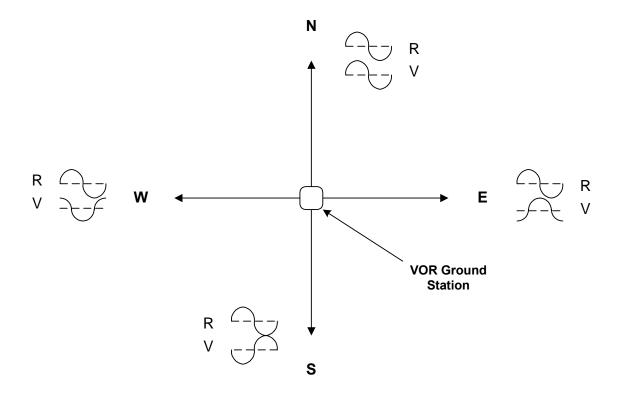
Figure 2-9

Typical MB Display

Typical MB Approach Parameters

Figure 2-10

2.16.3 Basic VOR Principles


VOR (Variable Omni Range) is a VHF navigational aid utilized to determine the bearing of an aircraft to a designated point. The system comprises of a fixed ground station and the airborne receiver. The ground station transmits two signals, a reference and a variable signal. Within line of sight of a VOR ground station, the aircraft receiver will detect, then compare the phase relationship between the *reference* and *variable signals* and translate it to a bearing from the ground station.

The basic principle of VOR is the measurement of time (phase) difference between the two signals.

The *reference signal* is a 30 Hz signal which frequency modulates (FM) a 9960Hz subcarrier. The frequency modulated signal is then used to amplitude modulate (AM) the RF carrier.

The *variable signal* uses the same carrier frequency but no modulation from the transmitter. The signal is modulated at 30 Hz by the rotation of the antenna.

The *variable* 30 Hz AM signal and the 30 Hz FM *reference* signal are timed (by the rotation of the antenna) to be in phase at a relative position of due north of the VOR station (see figure 2-11).

Phase Relationship between Variable and Reference Signals

Figure 2-11

Using Figure 2-10, Note at due North, the signals are IN phase. At due East - the signals are 90° out of phase, due South - 180° out of phase, due West - 270° out of phase. The VOR receiver in the aircraft, measures this phase difference and displays the information as the correct bearing TO or FROM the ground station.

T-36C 90 008 077-2

VOLUME 2

MAINTENANCE PROCEDURES

CHAPTER III

THEORY OF OPERATION

3.1 General

The T-36C is a signal generator and COMM transmitter parameter-measuring instrument capable of providing stimulus signals over a broad range of frequencies and diverse modulation types. The unit operates into two basic modes, Communications and navigation. This division holds for most of the circuits in the Test Set because they are used for either navigation or communication. Exceptions occur in the areas where signals are combined to provide a common output connector, power supply, or frequency control.

The discussion of the T-36C circuits will be divided between frequency generation, modulation, transmitter measurements, microprocessor, and power supplies. Because the understanding of the methods of frequency generation are key to the discussions of both the navigation and Communications circuits, this subject will be covered first. Signal combining and power supply, more incidental than key, are discussed last.

3.2 <u>Frequency Generation</u>

All the frequencies required by the T-36C, such as carrier and modulation frequencies, are generated using digital techniques. Frequency accuracy is directly related to the single precision reference source which is a highly accurate, temperature compensated, crystal oscillator (TCXO). These reference frequencies include:

FREQUENCY	USE	
20.97152 MHz	DDS reference	
1.31072 MHz	Master clock for navigation modulation	
400.000 kHz	For navigation PLL's	
454.545 kHz	Reference for frequency discriminator	

The master frequency reference for the entire T-36C is the 10.00000 MHz TCXO, U25, with a frequency accuracy of +/- 1 PPM. The 20.97152 MHz signal has a least common denominator with 10 MHz of 640 Hz. The 640 Hz frequency is derived from 20.97152 MHz by dividing that frequency by 32,768 or 2 to 15th power. The same 640 Hz frequency can be generated from the 10 MHz precision source by dividing by 15625 which is 5 to the 6th power. The two divided-down outputs, each at 640 Hz, feed a phase detector, U4, the output of which feeds a loop amplifier, U16, and adjusts the frequency of the 20.1572 MHz oscillator via the varactor, CR1.

The 1.31072 MHz reference, which is used for the generation of the NAV modulation waveforms, is derived by dividing the 20.97153 MHz crystal frequency by 16 using U5. The 400 kHz reference for the navigation phase locked loop synthesizers is generated by dividing 10 MHz by

25 with U3. The 454.545 kHz signal is generated from the 10 MHz master oscillator by dividing by 22, using U3 and U40.

3.3 COMM Frequency Synthesizer

The frequency range for Communications testing is from 108 MHz to 174 MHz. The method of generating this range of carrier frequencies is to heterodyne two frequencies, both considerably higher than the carrier frequency being generated, and to use the difference frequency as the carrier. The two loops are called the high frequency loop and the low frequency loop.

The actual frequency generated by the high and low frequency loops is chosen to minimize the generation of spurious outputs due to intermodulation. The entire COMM frequency range is divided into bands with the high frequency loop providing a constant frequency while the unit is operated within a band. An exception is when the frequency for the high frequency loop is slightly changed for frequency modulation.

The high and low frequency loops are, essentially, identical. The VCO is divided by a fixed factor of 512, to produce an output in the 1 to 2 MHz range that will permit the use of conventional logic type phase detectors. This division is performed using low power ECL prescalers U6 and U11. Since the output of these prescalers is an ECL signal, a buffer is provided to convert the ECL to HCMOS levels. Additional dividers (U9, U50) are used to get the desired factor 512.

The direct digital synthesizers, DDS (U10, U38), are single chip synthesizers that provide both a sine wave output and a very fast comparator that can be used to detect zero crossings and provide a stable square wave. This square wave output is fed to a phase detector along with the output of the 512 prescaler. The phase detector feeds a loop amplifier U22, for the high frequency loop and U20 for the low frequency loop.

The DDS synthesizers are 32 bit accumulator types such that the frequency least significant bit (LSB) weighting is the input clock frequency divided by 2 to the 32nd power or 20.97152E6/4.2949672E9 = 0.0048828126 Hz. The frequency of the DDS is effectively multiplied by 512 and consequently, the LSB is multiplied by the same factor to 2.5 Hz. No T-36M application requires resolution finer than 100 Hz.

The tuning range of the high and low frequency loops has been deliberately limited to prevent the generation of wideband phase noise from the loop amplifier outputs. This, however, limits the capture range of the phase locked loop.

3.4 COMM Modulation

The high frequency and low frequency loops are heterodyned using a diode-type doubly balanced mixer, U19. The use of a passive mixer reduces the generation of intermodulation distortion. One VCO feeds the mixer directly while the other is attenuated to set the proper high-level/low-level signal differences.

The output of the mixer feeds a low pass filter with a 400 MHz cutoff frequency. This filter removes all mixing products above 400 MHz, the highest frequency provided by the unit. Other low pass filters are used for each operational band to remove unwanted mixing products for each band. The low pass filters are switched using PIN diodes, CR2 to CR20. Series diodes pass the signal through the desired filter while shunt diodes prevent the unselected filters from leaking energy through to the output.

The outputs of the switched low pass filters are leveled by an AGC amplifier, which provides a stable input to the AM modulator. The AGC is achieved by varying control voltage of mixer. Two monolithic amplifiers, U12 and U18, are used to amplify the signal. The diode, CR21, rectifies the carrier level and provides an output voltage that feeds an error amplifier, U13, which provides a variable control voltage to mixer U51.

The AM modulator operates in a similar fashion as the AGC system. Two mixers, U1 and U2, are drove by amp U36. The DC level is combined with the AC-coupled COMM modulation to provide the carrier level for the COMM output. U3 and U4 compensate for loss of the mixers and U5 provides required output level. The amplitude modulator output, combined with the other outputs, is available on the front panel output connector.

In FM mode the modulation signal is switched to U46 amplifier by switch U1 (AM/FM switch board). U46 injects the modulation signal into the high frequency PLL. Frequency modulation is provided at a frequency of 1 kHz by changing the amplitude of the modulation signal.

3.5 COMM Transmitter Modulation and Frequency

Transmitter measurements of modulation and frequency are made by using the COMM synthesizer, slightly offset from the nominal frequency, as a local oscillator. When a COMM transmitter signal is present (>1w) or the XMIT MEAS switch is pressed, the T-36C computer offsets the COMM synthesizer, operating as the local oscillator, for the superheterodyne receiver, at 454.545 kHz.

The mixer for the transmitter modulation measurements is included in U29, which is a FM IF subsystem. Also included in this chip is a limiting IF amplifier for FM signal processing and a frequency discriminator. The frequency discriminator is used both for the normal function of providing FM demodulation, by measuring the amount of frequency deviation of a FM modulated transmitter, and for performing frequency measurements.

When transmitter power is initially applied to the T-36C, or the XMIT MEAS switch is pressed, the 454.545 kHz reference frequency is applied to the limiting IF input. This calibration signal is very precise because it is derived from the 10 MHz TCXO. The DC level of the frequency discriminator is measured using an A/D converter and the value is stored by the microprocessor.

The calibration signal is removed and the frequency synthesizer is offset by 454.545 kHz which places the nominal UUT transmitter carrier frequency in the IF bandwidth. The DC level of the frequency discriminator is again measured and compared to the value obtained with the calibration signal. The frequency synthesizer is stepped up or down to make the UUT derived DC voltage of the frequency discriminator equal to the value obtained with the calibration signal.

The difference between the nominal offset frequency, which is the carrier plus 454.545 kHz, is the frequency error of the transmitter. In addition to providing the frequency error, this technique insures that the transmitter spectrum is centered in the IF pass band which minimizes the errors due to an off-center signal.

The FM discriminator is used for the frequency measurement for both AM and FM UUT transmitters. The limiting action of the FM IF amplifier allows frequency measurement of an AM transmitter, even if there is some modest level of modulation. In addition, since the DC value of the discriminator involves heavy filtering of the FM demdodulator discriminator, the effects of modest frequency modulation are eliminated. Of course, if the applied modulation is high, either AM or FM, the frequency measurement will be compromised. In the case of high AM, the limiting amplifier will go out of limiting on the negative peaks and affect the DC level from the discriminator. In the case of high FM levels, any non-linearity's of the discriminator will appear as

a DC offset and compromise the measurement.

The AM modulation measurement is made using an active peak detector, U31. This circuit is superior to the conventional diode AM detector because there is no diode offset voltage. An AM IF amplifier is provided with about 40 dB of gain control and an AGC system is provided to stabilize the signal level from the IF amplifier output. The output, which is transformer coupled, feeds the active peak detector. The peak detector time constants are selected such that the detector is capable of following the modulation, but does not decay significantly between the 2.2 sec cycles of the 454.545 kHz IF frequency.

The peak detected voltage is fed to U32 where it is filtered, to remove any vestiges of the 454.54 KHz IF carrier and the bias voltage, and subtracted from the signal to produce the envelope of the modulation at the output of U32. This voltage is further filtered in U34 to generate a voltage proportional only to the carrier, which is used for the AGC action. Frequency modulation is demodulated by simply using the output of the frequency discriminator of U29.

U35 is an analog switch that connects either the AM or FM demodulator, depending on the position of the AM/FM switch, to the peak detector. This peak detector is not to be confused with the peak detector circuit of the AM demodulator that was capable of detecting the peak of the AM envelope but would follow the modulation. This peak detector has a time constant of 0.1 second, much longer than the period of the lowest modulation frequency and is capable of holding the peak of the modulation.

Two peak detectors are employed; a positive peak, U33A, and a negative peak detector, U33B. The output of the peak detectors is differenced in an amplifier, U32A. The differencing amplifier provides an output that is proportional to (positive peak - negative peak) the accepted method of measuring modulation. The microprocessor reads the output analog voltage and provides the properly scaled display of modulation.

3.6 COMM Transmitter Power and VSWR

The T-36C is capable of measuring both the power output of a communications transceiver and the voltage standing wave ratio (VSWR) of its antenna. The T-36C also provides a high-power dummy load for transmitter measurements when an antenna is not connected. Included in the unit is a VSWR bridge that is used for determining the VSWR of 50-ohm antenna.

When a transmitter is directly connected to the T-36C, the microprocessor connects the antenna port to the VSWR bridge by switching the relay, K3. If a load is applied to the antenna connection that has a VSWR of 5:1 or less, the relay is kept in the energized state and applies the load to the VSWR bridge. If the load provides a VSWR of greater than 5:1, which would include the normal situation of no connection, the relay is de-energized and a 50-ohm dummy load is applied to the VSWR bridge.

The high power resistors R25, R11, R24, R12, R13 and the resistors used in the VSWR bridge R16, R18, R20 and R22 provide 14dB attenuation. This arrangement causes the majority of the power to be dissipated in the VSWR bridge which contains 4 high power resistors and thus distributes the power over a larger radiating surface.

The 14 dB attenuator provides reduced power signals that may be safely handled for the purposes of power and VSWR measurement. The output-side shunt resistor for the attenuator is created by the series combination of R12 and R13. The transmitter measurement is performed at the junction of these resistors so that there is an additional 3 dB attenuation provided by this combination. FM transmitters with carrier powers as high as 25 watts can be measured with the T-36C. In the case of an AM transmitter, the peak power at 100% modulation is 100 watts. The 16 dB of attenuation is required to limit the peak inverse voltage across the detector diode, D1.

Transmitter power is measured by diode rectifying the RF input and measuring the resulting DC value. Considerable filtering is provided so that the value read will represent average power rather than peak power.

VSWR is determined by measuring the output of the VSWR Bridge and using that voltage in the VSWR calculation. Since a wide range of power and VSWR is involved, the diode voltages will include both the linear and square-law regions. Linearization algorithms are employed to correct for these distortions.

3.7 NAV Signal Generation

Dedicated generating circuits are used for navigation signals. This is necessary because the T-36C must provide three simultaneous signals in the ILS mode; Localizer, Glide Slope, and Marker Beacon. The navigation signal generation is divided into two areas; VHF and UHF. The VHF section provides the VOR and Localizer signals while the UHF section provides the Glide Slope Signal. The Marker Beacon is provided by the COMM synthesizer.

3.8 VHF Signals

The VHF signal generation employs a simple, single-loop synthesizer to generate the necessary carrier frequencies. This synthesizer is a one-chip synthesizer, U71, that contains all the necessary circuits except the loop amplifier for the phase-locked loop. U71 is serially programmed from the microprocessor and receives a precision 400 kHz reference frequency from the 10 MHz TCXO. The loop amplifier consists of U72 and a twin-T network to remove the reference sidebands. The VHF VCO is a Clapp-style oscillator which is varactor tuned by CR17. The oscillator is followed with a fixed attenuator to reduce pulling of the VCO by other circuits.

Two stages of buffer amplifiers, U66 and U67 provide additional isolation from the VCO and provide an AGC system to stabilize the amplitude of the output. A sample of the output is rectified using CR18 and compared to a reference voltage, which is derived from a forward biased diode. This improves the temperature stability of the AGC by compensating for the variable diode voltage. Feedback is achieved by varying the supply current and, consequently, the gain of the buffer amplifier, U67. Amplitude modulation is applied using a balanced mixer, U68. After the modulation is applied, the signal is amplified to the desired output level with the amplifier, U21.

3.9 UHF Signals

The UHF NAV synthesizer is similar to the VHF counterpart. The VCO is a bipolar Colpitts type using Q1 with two stages of buffer isolation, and an AGC. The diode CR14 rectifies the output of the second buffer amplifier, U55, and the output is compared to the forward biased voltage of a similar diode, CR15. Adjusting the current to the amplifier using the transistor, Q2, varies the gain of the second buffer amplifier, U55. The output of the second buffer amplifier is fed to the modulator, which is a doubly balanced diode modulator, U56. The phase locked loop is achieved using the same type single chip synthesizer as used in the VHF signal generator, U59. In addition, a loop amplifier, U50, with a twin-T network is used to reduce the reference sidebands.

3.10 Navigation Modulation

The waveforms required for modulating the VHF and UHF navigation carriers are generated with digital sampling techniques. The signals generated are 30 Hz, 90 Hz, 150 Hz, 1020 Hz, and 9960 Hz. In addition, the marker beacon modulation tones of 400 Hz, 1300 Hz, and 3000 Hz are generated.

Although most of the modulating waveforms are sinusoidal, other digital operations must be performed on these tones, such as frequency modulation of the 9960 Hz VOR reference and accurate phase shift of the 30 Hz VOR variable tones. Also, the amplitudes of the ILS 90 and 150 Hz tones are set with great accuracy for the LOC and GS modulations. The waveforms are digitized and stored in a ROM. The ROM is sequentially addressed and the value of the digitized waveform is converted to analog to recreate desired waveform.

For all the NAV signals, except the Marker Beacon tones, the frequencies are integer multiples of 30 Hz. Therefore, 1/30th of a second, (33.333msec), of amplitude samples were stored in the ROM which represents an integer number of cycles for the navigation waveforms stored. A table of the disposition of the ROM includes:

Number of Waveform Cycles		
30 Hz Variable	1	
90 Hz Variable	3	
150 Hz Variable	5	
1020 Hz Variable	34	
9960 Hz Variable	1	

Notice that the 9960 Hz VOR reference contains only 1 complete cycle. It would appear that 332 complete 9960 Hz cycles would occur in 33.333 ms. However, it must be remembered that the 9960 Hz VOR reference is frequency modulated and the instantaneous frequency of each cycle is different over the 33.333 ms period. Therefore, the process repeats after 33.333 ms, providing the nominal 9960 Hz carrier is phase locked to the 332nd harmonic of the 30 Hz frequency.

The stored data must be sampled at a rate greater than twice the highest frequency component of the digitized and stored waveforms. The highest frequency involved in the navigation waveforms is about 10 kHz, derived from the frequency modulated 9960 Hz VOR reference plus the significant sidebands due to the 30 Hz FM. To insure a significantly high sample rate, the waveforms are stored as 2048 samples which are cycled in 33.333 ms, requiring a sample rate of 61.44 kHz which is sufficiently high to satisfy the Nyquist criterion.

The 61.44 MHz clock is derived by first multiplying the 1.31072 MHz signal from the reference frequency generator by three and amplifying and squaring up that signal in U24. This frequency of 3.93216 MHz is then divided by 64 in U25 to provide the required 61.44 kHz clocks for the navigation waveform generation. The frequency multiplication is achieved by filtering the strong third harmonic component of the 1.31072 MHz square wave using the bandpass filter consisting of C45, C46, C49, C50, L2, and L6.

The ROM that contains the digitized NAV waveforms is U35 and the counters U28, U29, and U30 generate the sequential address for accessing the ROM. For the generation of the 90 Hz and 150 Hz waveforms required for the Localizer and Glide Slope, the digitized samples are read in sequence and their digital values latched into the output D/A converter, U40.

The Localizer and Glide Slope waveforms require precise control of the amplitude of each of the 90 and 150 Hz, components which is accomplished by changing the reference voltage of the DAC, U40 with the reference voltage supplied from DAC U8. Thus the 90 and 150 Hz waveforms are stored in the ROM at constant amplitude, with the DAD selected amplitudes of the individual

frequency components controlled by DAC U8. The two components 90 and 150 Hz is summed in U43-A to create the signal for modulating the GS signal generator. In the case of the LOC, in addition to the 90 and 150 Hz modulation, a 1020 Hz Ident tone is added to the 90 and 150 Hz by summing amplifier U43-B.

When creating the VOR modulation it is necessary to add a phase shift between the zero crossing of the 30 Hz modulation of the VOR 9960 Hz reference and the 30 Hz variable tone. This is accomplished by adding an offset between the memory location read from the ROM for the 9960 Hz VOR reference and the variable. The four-bit adders, U31, U32, and U33, add the required offset for generating the VOR bearing. These adders receive one addend from the address counter and the other from the microprocessor. For all modes, other than VOR, the addend from the microprocessor is zero. Thus the addend is other than zero only when the VOR variable is read from the ROM and, therefore, only the VOR variable is shifted in phase.

Since the entire VOR variable sine wave is divided into 2048 segments, an offset of one segment produces a phase change of 360/2048 = 0.17578 degrees, representing the peak to peak quantizing error. To have a more accurate VOR signal, an additional 4 bits of resolution was provided by adding a time delay, U27, from the reading of the VOR sampled amplitude and the latching of this sample to the D/A converter. This results in a quantizing error of 0.01 degrees, which is more than sufficient for generating an accurate VOR bearing signal. In the case of VOR, the three components 30 Hz, 9960 Hz and 1020 Hz are summed in U41.

The Marker Beacon tones involve frequencies that are not integer multiples of 30 Hz and thus involve some minor compromises relative to the digital tone generation using the same ROM as the navigation tones. The navigation 1020 Hz Ident tone is the 34th harmonic of 30 Hz and is generated accurately. The 3000 Hz Marker Beacon tone is the 100th harmonic of 30 Hz and is also created accurately.

Because the 1300 Hz Marker Tone is not an integer multiple of 30 Hz, an approximation is employed. First, only one half of the sine function is stored in the ROM. When the sine wave is generated, the first half of the entire sine function is read from the ROM and the output amplifier is switched to a gain of -1 and the same half cycle is read from the ROM. Therefore, two passes are required of the ROM contents to create an entire cycle. This effectively decreases the cycle time of the ROM from 1/30 second to 1/15 second. However, 1300 Hz is not an integer multiple of 15 Hz either. However, the 87th harmonic of 15 Hz is 1305 Hz, which is sufficiently close to 1300 Hz to satisfy the system requirements. A similar situation exists with the 400 Hz tone. The 27th harmonic of 15 Hz is 405 Hz, which is sufficiently close for the system requirements

3.11 Ramp Testing

The T-36C provides a high-level output signal that is used to drive an antenna and provide a radiated signal suitable for antenna-to-antenna testing of the installed UUT. The ramp operation involves taking the normal output from the Test Set and amplifying it by 14 dB and providing that output to the antenna connector. The ramp mode is inhibited by attaching the protective cap to the front-panel antenna connector, J6. The protective cover contains a 10K resistor in the bridge circuit consisting of R1, R2, R3, and R4. The balancing of the bridge causes the output of the comparator U2 to go low and inhibits the ramp mode. Removing the cap and installing an antenna on the antenna connector causes the output to go to a high logic level and permits the ramp mode of operation.

Ramp operation causes relays K1 and K2 to energize. K2 routes the signal from the programmable attenuator output to the K1 and provides the power supply voltage for the ramp amplifier. K2 routes the input signal to the ramp amplifier. When K2 is energized, the internal 14dB attenuator is disconnected from the internal circuits so that the application of a UUT

transmitter to the front panel connector will result in the transmitter being terminated in a dummy load, thus protecting both the T-36C and the transmitter from damage. In the case of the Ramp Receive Mode, the input signal bypasses the ramp amplifier through the K1 relay.

3.12 Microprocessor

A 12 MHz 80C31 microprocessor, U3, performs all of the T-36C calculation and control functions. The processor has a battery backed-up RAM to allow the storing of system parameters for later recall. The RAM also stores some calibration parameters installed during factory test. The microprocessor reads the status of the front panel switches by sampling the switches. Eight outputs are provided by U10, which work in conjunction with 8 inputs from U4. The processor controls all relays used for RF switching, including the electro-mechanical attenuator.

As a power saving measure, a special relay driving circuit is used for the attenuator relays. Because the attenuator contains 8 relays, of which all 8 can be energized, considerable battery drain can be attributed to the attenuator. Advantage is taken of the characteristic of a relay that more coil current is required to activate a relay than is required to hold a relay. When the attenuator relays are changed, the relay driver circuit provides a short 12-volt pulse to activate the relay. After the one shot, U15 times out, the voltage for those relays that are energized is reduced to 6 volts.

The microprocessor also drives the display. With the exception of the power indicators, all data from the T-36C is displayed on a 2x40 matrix LCD, driven from the latch, U17 and written by a standard character set. The display contains its own drivers and decoders and provides underscore, cursor, and blinking. The LCD display has an internal electro-luminescent backlight, which requires high voltage alternating current, provided by a modular power supply, U5.

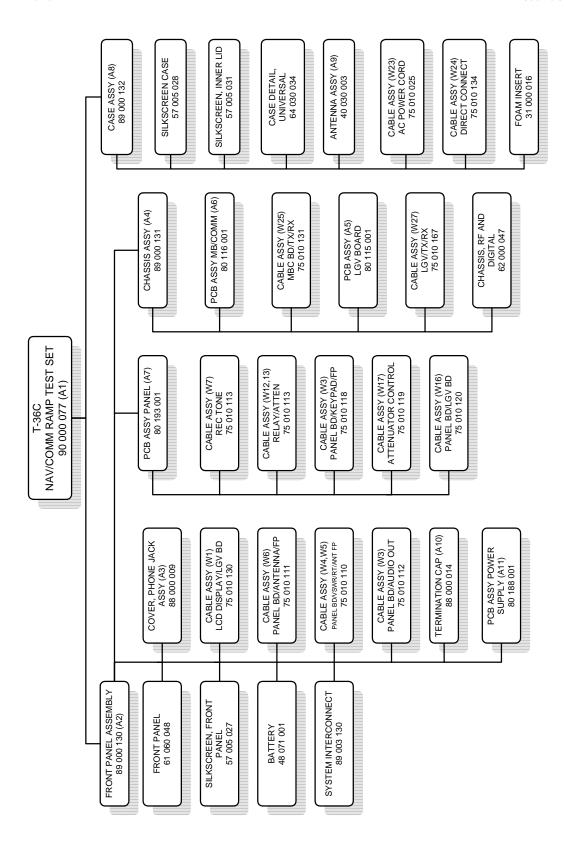
3.13 Power Supplies

The T-36C requires several power supply voltages with both positive and negative polarities. To save battery energy, high efficiency switching voltage converters are used to generate the required voltages. Because the unit contains a number of sensitive circuits that can be affected by noise from a switching power supply, on-board regulators provide the necessary voltages for the individual PC boards. The switching voltage converters provide a magnitude slightly greater than required and the voltage is regulated on the PC board where the energy is required.

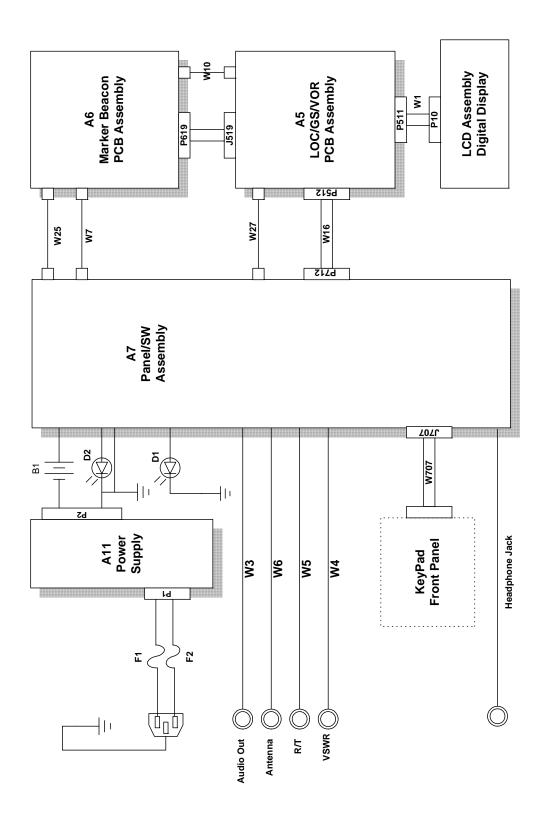
The 15-volt on-board requirement is met by a voltage converter that increases the nominal 12 VDC battery voltage to 16 VDC. A high efficiency switching voltage converter, using U3 with an external MOSFET, Q1 achieves 85 to 90%voltage conversion efficiency. This 16-volt source is distributed to the PC boards where it is converted to a regulated 15 volts using low-dropout regulators.

A second switching regulator, U4, Q2, converts the 12 VDC battery voltage to +6VDC with the same 85 to 90% efficiency. This voltage is distributed to the PC boards where it is converted to +5VDC for the logic and other circuits. The +6 VDC source is also used, without further conversion; to hold the attenuator relays. The +6VDC supply is converted to -6 VDC by use of a third switching power supply and is distributed to the PC boards to be converted to -5VDC.

The T-36C contains an internal battery charger to provide charging current for the unit. There is sufficient current to charge the battery while the unit is operating.


By use of different fuse configurations, The T-36C may be configured for either 110 or 220-volt

operation. The regulated voltage is applied to the battery through the current limiting resistor, R2, when the DC switch is OFF. During operation, DC switch ON, resistor, R1, is connected in parallel to R2, which provides enough current to charge the battery and utilize the Test Set.


The T-36C has a time-out circuit to prevent the unit from operating until the battery depletes. The binary counter, U10, accomplishes the timing function and power is applied by energizing the relay, K5. The application of power to the Test Set provides power to the timing circuit and resets the binary counter. The output of the gate U8, holds the relay energized so that releasing the front panel switch will not remove power from the unit. If the T-36C is not receiving a charge, the binary counter will count until the last stage changes state and the unit is de-energized.

T-36C Configuration Chart

Figure 3-1

T-36C Simplified Block Diagram

Figure 3-2

CHAPTER IV

GENERAL MAINTENANCE AND SERVICING INSTRUCTIONS

4.1 General

The use of the current generation of electronic components has dramatically decreased the cost of maintaining and calibrating test equipment. Tel-Instrument Electronics Corp. has recommended an annual calibration and alignment interval and periodic checks to keep the T-36C in operational condition. Performing preventative maintenance checks of the Test Set and Test Set verification checks if a failure is suspected will reduce down time by detecting and correcting potential problems at their onset. This chapter is broken down in three sections.

- Routine Maintenance (Section A).
- 2. Test Set Verification and Acceptance Checks (Section B).
- 3. Annual Calibration and Alignment (Section C).

Routine Maintenance: By routinely cleaning and inspecting the T-36C Test Set, the operator will be able to reduce down time due to unexpected failures. Routine Maintenance, as outlined in *Section A*, consists of checks and observations performed to maintain the Test Set in a serviceable and ready condition. They should be accomplished each time the Test Set is utilized and after extended storage.

Test Set Verification and Acceptance Checks: If during normal operation a failure is suspected or unusual or erratic results are displayed, perform the procedures as listed in *Section B*. By conducting and verifying the Test Sets condition when abnormal results occur, the operator will be able to determine if the Test Set is malfunctioning or the UUT is at fault. Periodic checks will also alert the operator to possible problems and ensure the Test Set is in full operational condition before it is used.

Annual Calibration: A full Calibration and Alignment of the Test Set shall be performed under the following conditions:

- 1. Tel-Instrument Corporation recommends an <u>Annual Calibration & Alignment</u> to ensure accurate test results and improved performance.
- 2. If any failure occurs or is suspected during *Routine* or *Test Set Verification Checks*, a full Calibration and Alignment shall be performed.
- If any major assembly is replaced.
- 4. If during normal operation, the Test Set fails to meet any specification outlined in Chapter 1, Section B.

4.1.1 Safety Precautions

The following are general safety precautions that are not related to a particular test or procedure. These are recommended procedures that all personnel must apply during many phases of operation and maintenance. It is assumed that the operator has general knowledge of electrical theory and the dangers associated with it.

- 1. When performing any of the preceding tests thoroughly read and understand all procedures before actually performing them.
- 2. The various front panel connectors, switches, and controls specified can be located by referring to Figure 2-1 on page 2-3.
- 3. Take the time to learn the proper operation and function of the Test Set as outlined in Chapters 1, 2, and 3. Through knowledge of the Test Set and its capabilities greatly improves the time it takes to complete the tests.
- 4. Pay particular attention to **NOTES** and **WARNINGS** that may accompany some test procedures.

WARNINGS

Alerts the operator to potential dangers associated with a particular test. Thoroughly understand the warning before proceeding to prevent a potentially dangerous situation or damage to the Test Set.

NOTES

Provides supplemental information that enhances the test procedure.

- 5. Observe all standard safety procedures when working with live voltages. The potential for electric shock exists any time the Test Set is removed from its case.
- 6. DO-NOT service the unit or make adjustments alone. Always be in the presence of another person when working with live voltages.
- 7. Be familiar with general first aid procedures and CPR (Cardiopulmonary Resuscitation). Contact your local Red Cross for more information.
- 8. Ensure the test equipment and the tools you utilize are in good operational condition and not damaged in any way.

4.1.2 Preliminary Considerations

1. Test Equipment- Recommended test equipment is listed before each test. An equivalent type may be substituted in lieu of the listed equipment.

- 2. Environmental Considerations- Test and align the equipment in conditions similar to the conditions the Test Set will be utilized in.
- 3. Calibration Test Reports- Test reports are located in Appendix A & Appendix B. Make copies of the test reports before commencing the alignment to properly log results.
- 4. The Test Set should be allowed to warm up for a period not to exceed 10 minutes before testing begins.
- 5. Always begin with a fully charged battery.

SECTION A

ROUTINE MAINTENANCE

4.2 General

By routinely cleaning and inspecting the T-36C Test Set, the operator will be able to reduce down time due to unexpected failures. Routine Maintenance consists of; checks and observations performed to maintain the Test Set in a serviceable and ready condition. They should be accomplished each time the Test Set is utilized and after extended storage.

Routine maintenance consists of the following:

- 1. Cleaning of the T-36C Test Set exterior case.
- 2. Inspection of all connectors, cables and the Test Set assembly.
- 3. Battery check and charging.

4.2.1 Cleaning Procedure

Keep the Test Set clean by removing any loose dirt, mildew or mild corrosion with a soft cloth moistened with warm water and a mild detergent. Do not spray any cleaning detergent or water directly on the Test Set. Ensure to dry off the Test Set with a lint free cloth to remove all deposits and remaining cleaning solution. Strong cleaners and chemicals shall be avoided to prevent damage to the display, silk-screening, and switches.

4.2.2 Inspection of all Connectors, Cables and Test Set Assembly

By inspecting the cables, connectors, and the Test Set periodically, potential inaccurate test results will be alleviated.

- Check each cable for kinks, crushed insulation, frayed cables, and rusty connectors.
- 2. Check each antenna supplied with your Test Set for obvious signs of rust, dents and loose parts.
- 3. Inspect the Test Set case for signs of abuse. Large dents and cracked displays may render the Test Set inoperable.
- 4. Toggle and push each switch for proper operation. Sticking switches may result in erroneous test results.
- 5. Inspect for loose bolts, nuts, and screws; tighten if necessary.
- 6. Ensure all supplied antennas and cables are properly stowed when not in use.

4.2.3 Battery Check and Charging

Check the Ni-Cad battery before each use to ensure a sufficient charge is available to complete the required tests. By charging the battery a few hours each week, you will keep the Ni-Cad battery in a fully charged state ensuring a significant charge is available for extended testing. Follow the procedures in Para 2.7 to fully charge the battery before calibrating the Test Set.

SECTION B

TEST SET VERIFICATION AND ACCEPTANCE CHECKS

4.3 General

These procedures will be performed on an <u>Unopened</u> Test Set by measuring inputs/outputs. If the Test Set results are not within tolerances, the Test Set will require a full Calibration and Alignment as outlined in *Section C*. The tests are broken down into individual sections to allow the operator to verify proper operation of individual functions when a discrepancy may arise or repair was accomplished.

4.3.1 Test Equipment Required

The following support equipment (or their equivalent) is necessary to perform the Test Set Verification and Acceptance Checks:

Name	Designation/Description	
Universal Counter	HP 5335A	
RF Power Meter	HP 432A	
Spectrum Analyzer	HP 8558B	
Modulation Meter	Boonton Electronics 82AD	
Digital Voltmeter	Fluke 8000A	
Oscilloscope	Tektronix 2235	
DC Power Supply	0-12VDC /1A	
Zifor 3:VOR Radial Standard	Collins 478A-3	
Distortion Analyzer	HP 339A	
Variable attenuator 0 – 10 dB	Equivalent	
50 Ω 25 Watt Load	Equivalent	
50 Ω Load W/calibrated 2 KHz	Equivalent	
Mismatch	Equivalent	
Communication RX/TX Test Set	Equivalent	
Copy of Data Sheet (Appendix A) ¹		

Support Equipment

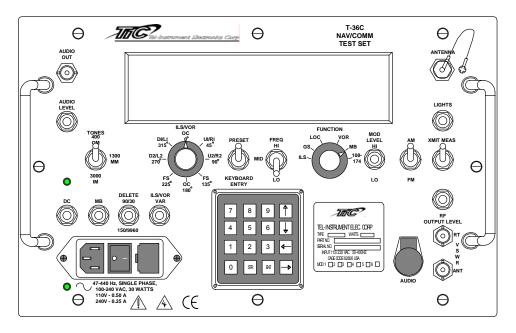
Table 4-1

A VOR/ILS Mockup Test Set such as a Rhode & Schwartz Navigation Modulation Analyzer/0856.4509.52 may be utilized in lieu of the Universal Counter, RF Power Meter, Spectrum Analyzer, Modulation Meter, Distortion Analyzer, and Zifor.

TIC

4-6

¹ To ensure accuracy and for simplicity, the Data Sheet is written and organized to reference each step by paragraph and step number. Make a photocopy, review and become familiar with the datasheet before beginning the tests.

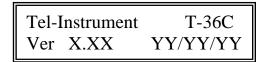

4.3.2 <u>Test Set Initial Settings</u>

Set the T-36C front panel switches to the following positions before each test, unless otherwise instructed:

Function/Rotary Switch	Position	
AUDIO LEVEL	Centered	
DC	Centered, LED OFF	
MB/NAV ID	Centered	
DELETE 90/30 - 150/9960	Centered	
ILS/VOR VAR	Centered	
TONES	400/OM	
ILS/VOR Rotary	OC/0°	
PRESET/KEYBOARD ENTRY	PRESET	
FREQ HI/MID/LO	LO	
FUNCTION Rotary	MB	
MOD LEVEL HI-LO	Centered	
AM – FM	AM	
LIGHTS	Centered	
XMIT MEAS	Up Position	
RF OUTPUT LEVEL	Centered	
AC ROCKER Switch	OFF, LED Extinguished	

Initial Settings

Table 4-2



Initial Settings

Figure 4-1

4.4 Display Operation and Verification

- 1. Turn the Test Set "ON" using 115 VAC by toggling the **DC** switch up.
- 2. Verify the GREEN LED illuminates and the Test Set turns "ON".
- 3. The T-36C Initial Start page will be displayed **briefly**, verify the following:

- 4. The Test Set will indicate the current software version and the date it was installed. Ensure that you have the correct version as purchased.
- 5. Toggle the **LIGHTS** switch *down* and verify the backlighting illuminates. Release the switch and the backlighting is extinguished.
- 6. Toggle the **LIGHTS** switch *Up* and release. Verify the backlighting illuminates and remains illuminated.
- 7. Toggle the **LIGHTS** switch back to the center position, backlighting extinguishes.
- 8. Turn the Test Set "OFF" by toggling the **DC** switch *down*. The Test Set will turn "OFF".
- 9. Turn the Test Set back "ON" and ensure the Test Set turns "OFF" after 15 minutes / \pm 3 minutes.

4.4.1 Radio Frequency Measurements

- 1. Set all Test Set Initial settings IAW Table 4-2
- 2. Connect the Frequency Counter to the Test Set **ANTENNA** connector.
- 3. Turn the Test Set "ON" by first holding the **DELETE** toggle switch in the *Down* position and toggle the **DC** switch *UP*. This procedure will remove any modulation from the signals. Verify the following displays:

Modulation Off Mode Enter to continue

- 4. Press the **ENT** button on the **KEYPAD**.
- 5. The Test Set display will briefly indicate:

Modulation turned OFF

6. Utilizing the data sheets, provided in Appendix A, measure and record the following parameters utilizing the Power Meter and Frequency Counter:

Mode	Frequency	Pout, dBm
LOC	108.10 / ±100Hz	+ 6 / ±1dBm
LOC	111.95 / ±100Hz	+ 6 / ±1 dBm
VOR	108.00 / ±100Hz	+ 6 / ±1 dBm
VOR	117.95 / ±100Hz	+ 6 / ±1 dBm
GS	108.95/329.15 / ±100Hz	+ 0 / ± 1dBm
GS	110.30/335.00 / ±100Hz	+ 0 / ±1 dBm
MB	75MHz / ±100Hz	+ 13 / ± 1dBm
COMM	108MHz	+ 0 / ± 1dBm
COMM	174MHz	+ 0 / ± 1dBm

- 7. Turn the Test Set "OFF" when all tests are complete.
- 8. Turn the Test Set back *ON* in a COMM Mode (Termination Cap Removed), 120.000 MHz, 0% Modulation. Slew the **RF OUTPUT LEVEL** switch and verify that the display output level slews from 000 dBm to -100 dBm / ±1dB.
- 9. Turn the Test Set "OFF" by toggling the **DC** power switch *down*.

4.4.2 VOR Modulation Measurements

- 1. Set the Test Set controls IAW Table 4-2. Utilize a Modulation Meter and Spectrum Analyzer, connect to the **RT** connector on the Test Set front panel.
- 2. Set the **FUNCTION** to **VOR** and turn "ON" the Test Set by toggling the **DC** power switch *up*.
 - 2a. Toggle the **DELETE** switch *UP* to the **90/30** position. Verify between $30\% / \pm 1\% (29 31\%)$; modulation tone of $9960 / \pm 99Hz$. Verify FM Deviation of $480 Hz / \pm 30 Hz$.
 - 2b. Toggle the **DELETE** switch *DOWN* to the **150/9960** position and verify between $30\% / \pm 1\% (29 31\%)$ modulation tone of $30 / \pm 0.3$ Hz. Record results on the data sheet.
 - 2c. Release the **DELETE** switch and verify the composite modulation (30 Hz & 9960 Hz) is $60\% / \pm 3\% (57 63\%)$.
 - 2d. Toggle the **MB/NAV ID** switch *DOWN* and verify that the **ID** tone is added to the signal to the composite signal.
 - 2e. Release the MB/NAV ID switch.

4.4.3 VOR Angle Verification

1. Set the Test Set controls IAW Table 4-2. Connect the **RF** output of the Test Set to a Modulation Meter.

- 2. Connect the Audio Output of the Modulation meter to the "ZIFOR", or equivalent.
- 3. Set the attenuation to 10 dB on the "ZIFOR", and turn the Test Set "ON" and the **FUNCTION** knob to **VOR**.
 - 3a. Observe that the angle corresponds with the **ILS/VOR** selected position (0°) and record the results on the data sheet.
- 4. Repeat step 3 for each position on the **ILS/VOR** knob and record the results.
 - 4a. 45°
 - 4b. 90°
 - 4c. 135°
 - 4d. 180°
 - 4e. 225°
 - 4f. 270°
 - 4g. 315°
- 5. Complete the calculations as shown on the data sheet and verify compliance.

4.4.4 LOC Modulation Measurements

- 1. Turn the **FUNCTION** knob to the **LOC** position.
 - 1a. Toggle and hold the **DELETE** switch *DOWN* to the **150/9960** position. Verify modulation of $20\% / \pm 1\% (19 21\%)$, modulation tone of $90 / \pm 0.9$ Hz.
 - 1b. Toggle the **DELETE** switch *UP* to the **90/30** position. Verify the modulation at $20\% / \pm 1\%$ (19 21%), modulation tone of $150 / \pm 1.5$ Hz.
 - 1c. Release the **DELETE** switch and verify the composite signal 90 & 150 Hz modulation is $37\% / \pm 2\%$ (35 39%).
 - 1d. Toggle the **MB/NAV ID** switch *DOWN* and verify that the **ID** tone is added to the composite signal.
 - 1e. Verify LOC modulation, as per data sheet, for L2, L1, OC, R1, & R2.

4.4.5 GS Modulation Measurements

- 1. Turn the **FUNCTION** knob to the **GS** position.
 - 1a. Toggle and hold the **DELETE** switch *DOWN* to the **150/9960** position. Verify modulation of $\underline{40\% / \pm 1\% (39 41\%)}$, modulation tone of $\underline{90 / \pm 0.9 \text{ Hz}}$.
 - 1b. Toggle the **DELETE** switch *UP* to the **90/30** position. Verify the modulation at $40\% / \pm 1\%$ (39 41%), modulation tone of 150 / ± 1.5 Hz.
 - 1c. Release the **DELETE** switch and verify the composite signal 90 & 150 Hz) modulation is $75\% / \pm 3\% (72 78\%)$.
 - 1d. Verify the GS modulation, as per the data sheet, at **D2**, **D1**, **OC**, **U1**, & **U2** positions.
 - 1e. Select **ILS** and verify a composite signal <u>110.15 MHz & 334.55 MHz</u>. Toggle the **MB/ID** switch *UP* and ensure the <u>75 MHz</u> signal is added.
- 2. With a Modulation Meter connected to the **ANTENNA** port, run the Test Set in COMM mode. Select 120.000 MHz, 70% AM @ 1000 Hz.
 - 2a. Verify the actual modulation level and that the reading tracks within **± 5** when toggling the **MOD LEVEL** switch.
- Select 120.000 MHz, FM mode, at 8 kHz deviation @ 1000 Hz.
 - 3a. Verify that the deviation tracks \pm 1 kHz when toggling the **MOD LEVEL** switch.
- 4. Connect an oscilloscope to the **AUDIO OUT** connector.
 - 4a. Measure and verify that the audio output level tracks in accordance with the following (utilize the **AUDIO LEVEL** toggle to vary and toggle the XMIT MEAS switch to measure the value).

4.4.5	AUDIO OUTPUT LEVEL	TOLERANCE
	100 mv	± 50 mv
4a	500 mv	± 50 mv
	900 mv	± 50 mv

4.4.6 Receiver

- 1. Connect a Signal Generator to the **ANTENNA** port, set the Signal Generator to 120.000 MHz, 0.0 dBm, and modulation *OFF*. Turn the Test Set on in a COMM mode. Select 120.0000 MHz. Toggle the **XMIT MEAS** switch down and hold.
 - 1a. Verify the Test Set displays 120.0000 MHz / ± 200 Hz.
 - 1b. Vary the Signal Generator \pm 9.5 kHz. Ensure the Test Set tracks \pm 0.2 kHz.

1c. Vary the Signal Generator Output from +16 dBm to -33 dBm. Verify the message on the display is as follows:

4.4.6	Message	Signal level, (dBm)
	POWER TOO HIGH	+16 dBm
	POWER IN RANGE	+ 9 dBm
1c	POWER IN RANGE	-7 dBm
10	LOW POWER	-17 dBm
	LOW POWER	-26 dBm
	NO POWER	- 33 dBm

- 1d. Release the **XMIT MEAS** switch.
- 2. Set the Signal Generator output to -10dBm, 120.0000 MHz, FM Modulation to 8 kHz. Toggle the **XMIT MEAS** switch *DOWN* and hold.
 - 2a. Verify the deviation reading of $8 \text{ kHz} / \pm 1 \text{ kHz}$.
 - 2b. Vary the Signal Generator Deviation from 1 kHz to 15 kHz. Ensure the Test Set tracks within **± 1 kHz**.
- 3. Place the Termination Cap on the **ANTENNA** connector.
- 4. Run the Test Set in COMM Mode, 120.0000 MHz. Connect a Signal Generator to R/T output with +30 dBm input (a RF amplifier may be necessary).
- 5. Verify that the Test Set display switches to a measurement mode and a power reading of <u>1 W</u>.
- 6. Connect the Calibrated Transmitter (+40 dBm) with a 10ft cable to the **R/T** port. Select 120.0000 MHz, modulation *OFF* on the Transmitter. Connect a 50 Ω load to the **ANT** port. Select 120.0000 MHz on the Test Set.
- 7. Verify the Test Set measures 10 W / ± 2 W, verify VSWR measurement.
- 8. Turn the transmitter *OFF*.
- 9. Replace the 50 Ω load with the variable attenuator. Turn the transmitter *ON* and verify the following:

4.4.6	Attenuator at ANT port	VSWR Measurement
9a	Open	> 5.0
9b	3dB	$3.2 / \pm 0.5$
9с	6dB	$1.6 / \pm 0.5$
9d	10dB	1.1 / ± 0.5

- 10. Repeat Step 9 at 150.0000 MHz.
- 11. Plug a headset into the Test Set. Turn the modulation *ON* with either AM or FM modulation. Verify that you are able to hear a tone.

12. Remove the installed fuses from the Front Panel Fuse lock and replace them with 250 V, 0.25 A, FFT Fuses. Connect the Test Set to a 230 VAC Power Supply and verify Test Set operates under that Voltage Level. After confirming Operation, Reinstall the initial fuses.

SECTION C

ANNUAL CALIBRATION AND ALIGNMENT

4.5 General

A full Calibration and Alignment of the Test Set shall be performed under the following conditions:

- 1. Tel-Instrument Corporation recommends an <u>Annual Calibration & Alignment</u> to ensure accurate test results and improved performance.
- 2. If any failure occurs or is suspected during *Routine* or *Test Set Verification Checks*, a full Calibration and Alignment shall be performed.
- 3. If any major assembly is replaced.
- 4. If during normal operation, the Test Set fails to meet any specification outlined in Chapter 1, Section B.

4.5.1 Procedures

These procedures will be performed on an annual basis. They will be performed on an opened box to allow access to test points and alignment controls to align the Test Set to manufacturer's specifications. If these adjustments fail to return the Test Set to the specified parameters, the unit may require repair and additional maintenance. By utilizing the following procedures and referring to the schematics (Chapter VI), a qualified technician should be able to troubleshoot the problem. Do not make adjustments for results that meet the specification.

WARNING

Any time you are working with exposed wiring, the potential for electrical shock increases. Ensure all standard electrical safety procedures are strictly enforced to prevent injury.

4.6 Test Equipment Required

The following support equipment (or their equivalent) is necessary to perform the *Test Set Annual Calibration and Alignment* of the T-36CTest Set.

Name	Designation/Description
Universal Counter	HP 5335A
RF Power Meter	HP 432A
Spectrum Analyzer	HP 8558B
Modulation Meter	Boonton Electronics 82AD
Digital Voltmeter	Fluke 8000A
Oscilloscope	Tektronix 2235
DC Power Supply	0-12VDC /1A
Zifor 3:VOR Radial Standard	Collins 478A-3
Distortion Analyzer	HP 339A
Variable attenuator 0 – 10 dB	Equivalent
50 Ω 25 Watt Load	Equivalent
10 K Ω Load	Equivalent
50 Ω Load W/calibrated 2 KHz Mismatch	Equivalent
Communication RX/TX Test Set	Equivalent
Copy of Data Sheet (Appendix B) ²	

Test Set Annual Calibration Equipment List

Table 4-3

A VOR/ILS Mockup Test Set such as a Rhode & Schwartz Navigation Modulation Analyzer/0856.4509.52 (or similar) may be utilized in lieu of the Universal Counter, RF Power Meter, Spectrum Analyzer, Modulation Meter, Distortion Analyzer, and Zifor.

² To ensure accuracy and for simplicity, the Data Sheet is written and organized to reference each step by paragraph and step number. Make a photocopy, review and become familiar with the datasheet before beginning the tests.

4-15

4.6.1 <u>Test Set Initial Settings</u>

Set the T-36C front panel switches to the following positions before each test, unless otherwise instructed:

Function/Rotary Switch	Position
AUDIO LEVEL	Centered
DC	Centered, LED OFF
MB/NAV ID	Centered
DELETE 90/30 - 150/9960	Centered
ILS/VOR VAR	Centered
TONES	400/OM
ILS/VOR Rotary	OC/0°
PRESET/KEYBOARD ENTRY	PRESET
FREQ HI/MID/LO	LO
FUNCTION Rotary	MB
MOD LEVEL HI-LO	Centered
AM – FM	AM
LIGHTS	Centered
XMIT MEAS	Up Position
RF OUTPUT LEVEL	Centered
AC ROCKER Switch	OFF, LED Extinguished

Table 4-4
Initial Settings

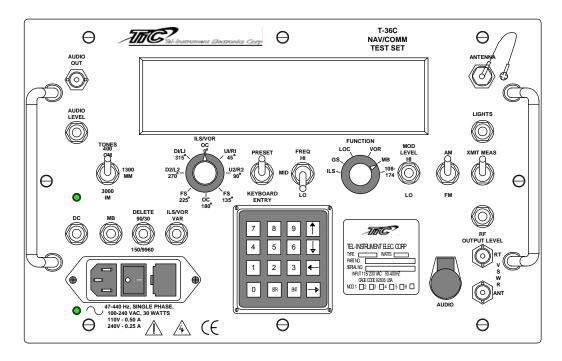
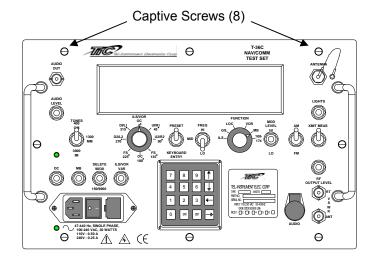


Figure 4-2
Initial Settings

WARNING

Any time you are working with exposed wiring, the potential for electrical shock increases. Ensure all standard electrical safety procedures are strictly enforced to prevent possible injury.


4.7 Disassembly of the Test Set

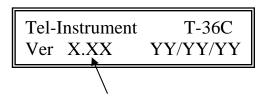
The T-36C Test Set was designed for ease of maintenance and access. Disassembly of the Test requires only the use of simple hand tools. Ensure that the tools that are utilized are in good working condition.

Electrostatic discharge may also pose a concern. When ever opening the Test Set, be sure to follow standard grounding principles. When ever a potential exists for static electricity to build, damage to the Test Set and the internal electronic components may result.

4.7.1 <u>Test Set Disassembly Procedures</u>

1. Remove the Test Set from the Case by loosening the eight (8) lock bolts located on the front panel of the Test Set. Do not remove the bolts as they are a captive type. Only loosen them enough to release their grip on the anchor nuts.

- 2. Grasp the Test Set Handles and slowly remove the Test Set assembly from the case. Ensure that you do not use force to pull the Test Set from the case; you may have to slightly angle the Test Set to allow for free movement of the assembly and attached hardware and cables.
- 3. Access to the individual circuit boards is accomplished by removing the attaching hardware and covers. Ensure that all attaching cables and connectors remain attached and undue stress is not put on them.
- 4. Reassembly of the Test Set is accomplished by reversing the order of disassembly. Ensure that all of the connectors, cables and mounting hardware are tight and secure.


4.8 Annual Calibration

4.8.1 Power Interlocks, and Clocks

Utilize the Figures 4-4, 4-5, and 4-6 at the end of this chapter for locations of test points and components for adjustment.

- 1. Connect the Test Set to a 115 VAC power source. Ensure that the DC power is not selected. Verify the *GREEN* LED is illuminated.
- Disconnect the Test Battery and measure 14-19 VDC between E62 and E66.
- 3. Reconnect the battery.
- 4. Measure and verify the charging voltage is $\underline{13.5 \text{ VDC} / \pm 0.5 \text{ VDC}}$ between E-62 and E-66.
- 5. Turn the Test Set *ON* by toggling the **DC** switch *UP* and ensure the *DC* LED Illuminates.
- 6. The initial start page will be shown momentarily. Verify Software Revision Status of your Test Set.

Software Revision Number

- 7. Turn the Test Set OFF.
- 8. Place the Test Set in the MODULATION OFF/ON Mode by turning "ON" the Test Set while holding down the **DELETE** switch. Verify the following Display.

Modulation Off Mode Enter to continue

9. Press **ENT** on the Keyboard to disable the modulation.

Modulation turned OFF

10. Measure and verify the following DC Voltages on the MB/COMM PCB Board.

4.8.1	4.8.1 TEST POINT EXPECTED VA			
10a	TP1	-6 VDC / ± 0.3		
10b	TP2	+17 VDC / ± 0.5		
10c	TP3	+6 VDC / ± 0.3		
10d	TP4	+5 VDC / ± 0.3		
10e	TP5	+15 VDC / ± 0.3		
10f	TP6	-5 VDC / ± 0.3		
10g	TP7	+5VDC / ± 0.3		
10h	TP8	+15 VDC / ± 0.3		

11. Measure and verify the following DC Voltages on the L/G/V Board.

4.8.1	TEST POINT	EXPECTED VALUE			
11a	TP3	+5 VDC / ± 0.3			
11b	TP15	+15 VDC / ± 0.3			
11c	TP16	-5 VDC / ± 0.3			

- 12. Remove the 10 K Ω Load from the **Antenna Port** and verify that the Test Set reverts too **ANTENNA MODE**; **0.13dBM** shall be displayed.
- 13. Reconnect the load and verify the Test Set returns to the Direct Connect Mode.
- 14. Turn power *OFF* to the Test Set.

4.8.2 <u>Transmitter Checks</u>

- 1. Disconnect coax **W27** from **J714** on the Panel/Switch PCB Board and connect it to a Power Meter or equivalent.
- 2. Turn the Test Set *ON* by Holding down the **DELETE** switch while applying power. Select **ENT** on the keypad to disable the modulation.
- 3. Measure the P/OUT at each of the steps IAW the Table below. Make adjustments utilizing the appropriate point only if necessary.

4.8.2	MODE	P/OUT ADJUST POINT	FREQUENCY
3a	LOC	-7 / ± 2dBm - R-181 (L/V/G Bd)	108.10 MHz / ± 150 Hz
3b	LOC	-7 / ± 2dBm - R-181 (L/V/G Bd)	111.95 MHz / ± 150 Hz
3c	VOR	-7 / ± 2dBm - R-181 (L/V/G Bd)	108.00 MHz / ± 150 Hz
3d	VOR	-7 / ± 2dBm - R-181 (L/V/G Bd)	117.95 MHz / ± 150 Hz
3e	GS	-5 / ± 2dBm - R-139 (L/V/G Bd)	108.95/329.15 MHz ± 300 Hz
3f	GS	-5 / ± 2dBm - R-139 (L/V/G Bd)	110.30/335.00 MHz ± 300 Hz

3g	MB	+3 / ± 2dBm R-125 (MB/COMM Bd)	75 MHz / ± 150 Hz
3j	COMM	+2/ ± 2dBm R-125 (MB/COMM Bd)	108 MHz / ± 150 Hz
3k	COMM	+2 / ± 2dBm R-125 (MB/COMM Bd)	174 MHz / ± 150 Hz

Ensure that any Harmonic level is < -15 dBm from the center frequency.

- 4. Connect a Frequency Meter for the Frequency measurements. If frequency is out of tolerance, adjust the Master **TCXO**, **U-25/R90**. If you are unable to adjust the frequency to tolerance, the Test Set will require further repair or returned to the factory.
- 5. Turn power *OFF* to the Test Set.
- 6. Reconnect W27 to J714.
- 7. Connect a Power Meter to the **Antenna Port** with a 10 foot cable (simulated antenna).
- 8. Place the Function switch in the **108 174 MHz** position.
- 9. Turn the Test Set *ON* in the *Calibration Mode* by Holding *down* the **MB/ID** switch while turning power *ON*.

Enter Cal Code:

10. Enter **953** and press **ENT** on the Keypad to access the *Calibration Mode*.

Tx & Rx Cal Tables Enter to continue

11. Select "Tx Ramp" (Option 2) and ENT.

TxDirect
 TxRamp
 RxDirect
 RxRamp

WARNING

Once entering the Test Set Calibration Tables, do not depress any buttons unless directed by the following procedures. Possible loss of the Test Set memory may occur. Ensure you follow the written procedures and/or the displayed instructions.

12. Depress the **ENT** until the Test Set display indicates 108 MHz.

You can not reverse direction if you pass the designated value. If you inadvertently pass the correct value, select **STR** to reverse back to the first display and select **ENT** to advance to the correct value.

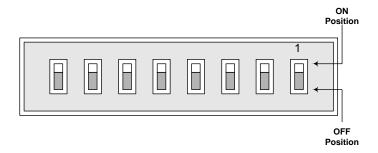
13. Verify <u>0 / ± 1 dBm</u> at 108 MHz. If out of tolerance, utilize the *UP/DOWN* arrows to adjust to the correct value. Check and verify every 10 MHz Step to ensure compliance.

В	Frequency	Power Out, dBm
13a	108 MHz	0 / ±1 dBm
13b	115 MHz	0 / ± 1 dBm
13c	125 MHz	0 / ± 1 dBm
13d	135 MHz	0 / ± 1 dBm
13e	145 MHz	0 / ± 1 dBm
13f	155 MHz	0 / ± 1 dBm
13g	165 MHz	0 / ± 1 dBm
13h	174 MHz	0 / ± 1 dBm

14. Depress the **ENT** button until **MB** is displayed. Subsequent pushes of the **ENT** button will advance you to the VOR, LOC GS, and ILS tables. Verify each step IAW the following chart and adjust the *POWER Out, dBm*. If out of tolerance, utilize the *UP/DOWN* arrows to adjust to the correct value.

В	MODE	Power Out, dBm
14a	MB 75 MHz	+13 / ±1 dBm
14b	L/V 108.05 MHz	+6 / ± 1 dBm
14c	L/V 113.00 MHz	+6 / ± 1 dBm
14d	L/V 117.95 MHz	+6 / ± 1 dBm
14e	GS 108.95	0 / ± 1 dBm
14f	GS 109.30	0 / ± 1 dBm
14g	GS 110.30	0 / ± 1 dBm
14h	ILS 110.10	+6 / ± 1 dBm

- 15. Connect a 10K load at the **Antenna Port** and a Spectrum Analyzer to the **R/T Port** with the 10 Foot cable.
- 16. Select the "TxDir" Calibration Table (Option 1). Utilizing the same procedures as above, adjust the Output levels to the following chart.


В	MODE	Power Out, dBm			
16a	108 MHz	-25 / ± 0.5 dBm			
16b	115 MHz	-25 / ± 0.5 dBm			
16c	125 MHz	-25 / ± 0.5 dBm			
16d	135 MHz	-25 / ± 0.5 dBm			
16e	145 MHz	-25 / ± 0.5 dBm			
16f	155 MHz	-25 / ± 0.5 dBm			
16g	165 MHz	-25 / ± 0.5 dBm			
16h	174 MHz	-25 / ± 0.5 dBm			
16i	MB 75 MHz	-25 / ± 0.5 dBm			
16j	L/V 108.05 MHz	-25 / ± 0.5 dBm			
16k	L/V 113.00 MHz	-25 / ± 0.5 dBm			
161	L/V 117.95 MHz	-25 / ± 0.5 dBm			
16m	GS 108.95	-30 / ± 0.5 dBm			
16n	GS 109.30	-30 / ± 0.5 dBm			
160	GS 110.30	-30 / ± 0.5 dBm			
16p	ILS 110.10	-25 / ± 0.5 dBm			

- 17. Turn the Test Set *OFF*. Disconnect the Antenna Terminal Cap, and turn the Test Set back *ON*. Toggle the **RF OUTPUT LEVEL** switch; ensure you can vary the signal level in the range of <u>-25 dBm to -100 dBm</u> in 1 dB steps <u>+ 1dB</u>.
- 18. Turn the Test Set *OFF* then back *ON* and select the **MB** Mode utilizing the **FUNCTION** switch.
- 19. Connect a Modulation Meter, or equivalent, to the *Antenna Port* and verify AM Modulation Levels are <u>95% / ± 5% (90 100%)</u> for each of the tones: OM, MM, and IM. Distortion levels should not exceed <u>15%</u>. Use R125 (MB/COMM Bd.) to correct any variances.
- 20. Verify the Output Power Levels in the MB and COMM modes (step 14). Correct the *TxRamp and TxDir* tables, if necessary.
- 21. Turn the T/S *OFF* and back *ON* in the *Calibration Mode*. Select *VOR* calibration option and set/verify the modulation tones in the following sequence:
 - 21a. Select 2; Set the modulation to 30% / ± 0.5% using R48, L/V/G Bd. The modulation should be 9960 Hz / ± 99 Hz. Verify FM deviation of 480 Hz / ± 30 Hz.
 - 21b. Select 1; Set modulation to 30% / \pm 0.5% using R-16, L/V/G Bd. The modulation tone should be $30 \text{ Hz} / \pm 3 \text{ Hz}$.
 - 21c. Select 3; Set the modulation to 10% / \pm 1%, using the *UP/DOWN* arrows. The modulation tone should be $\underline{1020 \text{ Hz}}/\pm 50 \text{ Hz}$.
 - 21d. Select **4**; (ALL) and verify composite **30 Hz + 9960 Hz** modulation is **60% ± 3% (57 63%)**.
 - 21e. Press the MB/ID switch down and verify the ID tone adds to the signal and increases the modulation level to $70\% / \pm 3\% (67 73\%)$. Release the switch.

21f. Verify the VOR Angles by connecting the Zifor Test Set, or equivalent, to the Antenna Connector IAW the following Chart:

VOR Bearing T/S	0	45	90	135	180	225	270	315
ZIFOR	180	225	270	315	0	45	90	135

21g. If necessary, adjust A7S1 until the indicator is within specification. Make the adjust at the 180° position. Record the positions on the Data Sheet.

A7S1

Figure 4-3

SWITCH S1 SECTIONS				
Section Degree Offset				
1	0.18			
2	0.35			
3	0.70			
4	1.41			
5	2.81			
6	5.62			
7	11.25			
8	22.50			

Switch S1 Sections and offsets

Table 4-5

- 22. Select the *LOC* calibration option. Follow the displayed directions and set the modulation levels and verify the modulation tones in the following sequence:
 - 22a. Select 1, 90 Hz/150 Hz; and adjust for equal amounts of modulation by adjusting R41, L/V/G Bd. Set the modulation to 20% / \pm 0.5%, utilize R182, L/V/G Bd. The modulation tone shall be 90 Hz / \pm 0.9 Hz.

- 22b. Select 2; Verify the modulation is $\underline{20\% / \pm 0.5\%}$. The modulation tone shall be 150 Hz / \pm 1.5 Hz.
- 22c. Select 3; Set the modulation to $10\% / \pm 1\%$ (utilizing the UP/DOWN Arrows on the keypad. The modulation tone shall be $1020 \text{ Hz} / \pm 50 \text{ Hz}$.
- Select 4 (ALL); and verify the composite (90 Hz and 150 Hz) modulation is $37\% / \pm 2\% (35 39\%)$.
- 22e. Toggle the **MB/ID** switch down; verify the **ID** tone is added to the signal and the modulation level increases to $47\%/\pm 3\%$ (44-50%). Release the switch.
- 22f. Turn the Test Set "OFF" then back "ON" in normal COMM Mode. Verify the LOC modulation for the following:

4.8.2	Difference in 90 Hz & 150 Hz Modulation				
22f(1)	L2	15.5% to 19.5%			
22f(2)	L1	6% - 10%			
22f(3)	OC	-1% - +1%			
22f(4)	R1	-6%10%			
22f(5)	R2	-15.5% to -19.5%			

- 23. Turn the T/S *OFF* and then back *ON* in **GS** mode. Toggle the **DELETE 90/30 150/9960** switch *UP* and *DOWN* and adjust the modulation levels even by adjusting **R32 L/V/G Bd**.
 - 23a. Hold the **DELETE** switch *DOWN* and set the and set the modulation to $40\% / \pm 0.5\% (39.5 4-.5\%)$ utilizing R137, L/V/G Bd. Ensure the modulation tone is $90 \text{ Hz} / \pm 0.9 \text{ Hz}$.
 - 23b. Hold the **DELETE** switch *UP* and verify the modulation is $\underline{40\% / \pm 0.5\%}$ (39.5 4-.5%). Ensure the modulation tone is $\underline{150 \text{ Hz} / \pm 0.5 \text{ Hz}}$.
 - 23c. Release the switch and verify the composite modulation is $75\% / \pm 3\% / (72 78\%)$.
 - 23d Verify the GS modulation for the following:

4.8.2	Difference in 90 Hz & 150 Hz Modulation				
23d	U2	15% to 20%			
23d	U1	7% - 11%			
23d	OC	-1% - +1%			
23d	D1	-7% to -11%			
23d	D2	-15% to -20%			

24. Select **ILS** mode. Verify a composite signal (LOC & GS) at 110.15 MHz and 334.55 MHz. Toggle the **MB/ID** switch and ensure the 75 MHz signal is added.

- 25. Connect the **ANTENNA Port** to a Modulation Meter. Turn the Test Set *ON* in the COMM Mode. Select **120.00 MHz** at **70% AM Mod @ 1000 Hz**.
- 26. Measure the Modulation Level and then calculate the correction coefficient as follows:

AMTx = Actual Reading / 70%

27. Apply the AMTx coefficient in Calibration Mode. Verify that the reading properly tracks to the displayed number within \pm 5% for the 1000 Hz tone.

If it is impossible to set both the MB and the COMM modulations utilizing R125, retune R125 for COMM modulation, and trim R72 L/V/G Bd. to correct the MB modulation. When completed, repeat steps 21 & 30.

28. Select **120 MHz, FM, 8 kHz deviation at 1000 Hz**. Measure the actual deviation and calculate the correction coefficient as:

FMTx = Actual Reading in KHz / 8 KHz

- 29. Apply the FMTx coefficient in Calibration Mode Verify the reading track with the displayed number to within **1 kHz**. Utilize 108 & 174 MHz as references.
- 30. Connect **AUDIO OUT PORT** to an oscilloscope. Measure and verify that the audio output voltage tracks to the preset number <u>+50 mv</u>.

Utilize the **AUDIO LEVEL** switch to preset the signal amplitude and press **XMIT MEAS** to make a measurement.

4.8.2	AUDIO OUTPUT LEVEL	TOLERANCE		
30a	100 mv	± 50 mv		
30b	500 mv	± 50 mv		
30c	900 mv	± 50 mv		

4.8.3 Receiver Checks

Connect a signal generator to the R/T Port utilizing a 10 foot cable. Set the output level to 10 dBm with the modulation OFF. In the Calibration Mode, select the "RxDir" table and follow instructions on the display. Change the generator frequency and verify at 100 – 170 MHz in 10 MHz steps. Verify correct power measurement of 25 W / ± 4W at each 10 MHz step. Skip the MB, LOC, VOR and ILS Modes at the end of the table.

- 2. Connect a signal generator to the **ANTENNA Port** utilizing a 10 foot cable. Set the output level to 0 dBm with the modulation *OFF*. In the Calibration Mode, select the "RxRamp" table and follow instructions on the display. Change the generator frequency and the correct power measurement to 25 W / ± 4W. Skip the MB, LOC, VOR and ILS Modes at the end of the table.
- Set the Signal Generator frequency to 120.000 MHz (0 dBm, modulation OFF) and run the test a second time in the COMM Mode. Select 120.000 MHz on the Test Set and hold down the XMIT-MEAS switch. Verify the measured frequency is 120.000 MHz ± 200 Hz.
- 4. Vary the Signal Generator ± 9.5 kHz from 120.000 MHz and verify that the Test Set tracks ± 200 Hz.
- Toggle the XMIT-MEAS switch and vary the signal generator output from +16 dBm to -33 dBm. Verify the Test Set display matches the input level as shown below.

Message Signal level, (dBn	
POWER TOO HIGH	+16 dBm
POWER IN RANGE	+ 9 dBm
POWER IN RANGE	-7 dBm
LOW POWER	-17 dBm
LOW POWER	-26 dBm
NO POWER	- 33 dBm

- 6. Set the Signal Generator to 0 dBm, modulation level to 70% AM. Toggle the **XMIT-MEAS** switch. Utilize **R96** (MB/COMM Board) adjust the modulation reading to <u>70%</u>. Ensure the Test Set is in **AM** mode. Vary the signal level from -8 to +9 dBm and verify that the modulation reading does not vary/exceed ± 3%.
- 7. Turn the modulation *OFF*. Set the signal generator output to 0dBm, set the voltage at <u>P19-12</u> to <u>0 ± 0.1 V</u> by adjusting R-183 (MB/COMM Board) Ensure the actual reading does not exceed 2%.
- 8. Set the signal generator modulation level to 50% AM. Take a % AM reading and calculate the correction factor as:

AMRx = 50% / actual reading %

9. Apply the coefficient while in the Calibration Mode. Reset the Test Set in the COMM Mode at 120.00 MHz. Toggle and hold the **XMIT-MEAS** switch. Verify

the AM measurement in the whole range from 0% to 100%. Ensure % AM tracks within \pm **5%**.

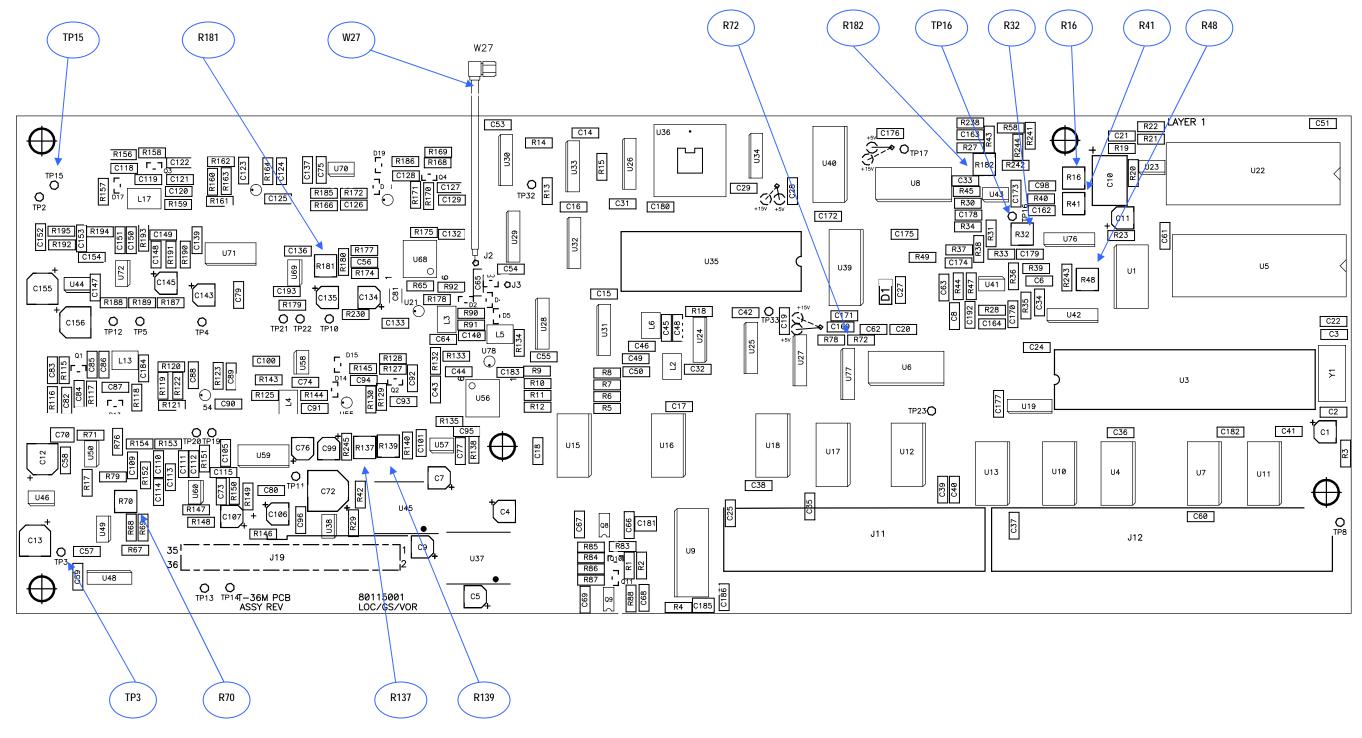
- 10. Tune **R-96** if necessary.
- 11. Set the signal generator output level to -10 dBm, 120.00 MHz and FM to 8 kHz.
- 12. Press the **XMIT-MEAS** switch and take a deviation reading.
- 13. Calculate the FM Deviation as follows:

FMRx = 8 kHz/ Deviation Reading

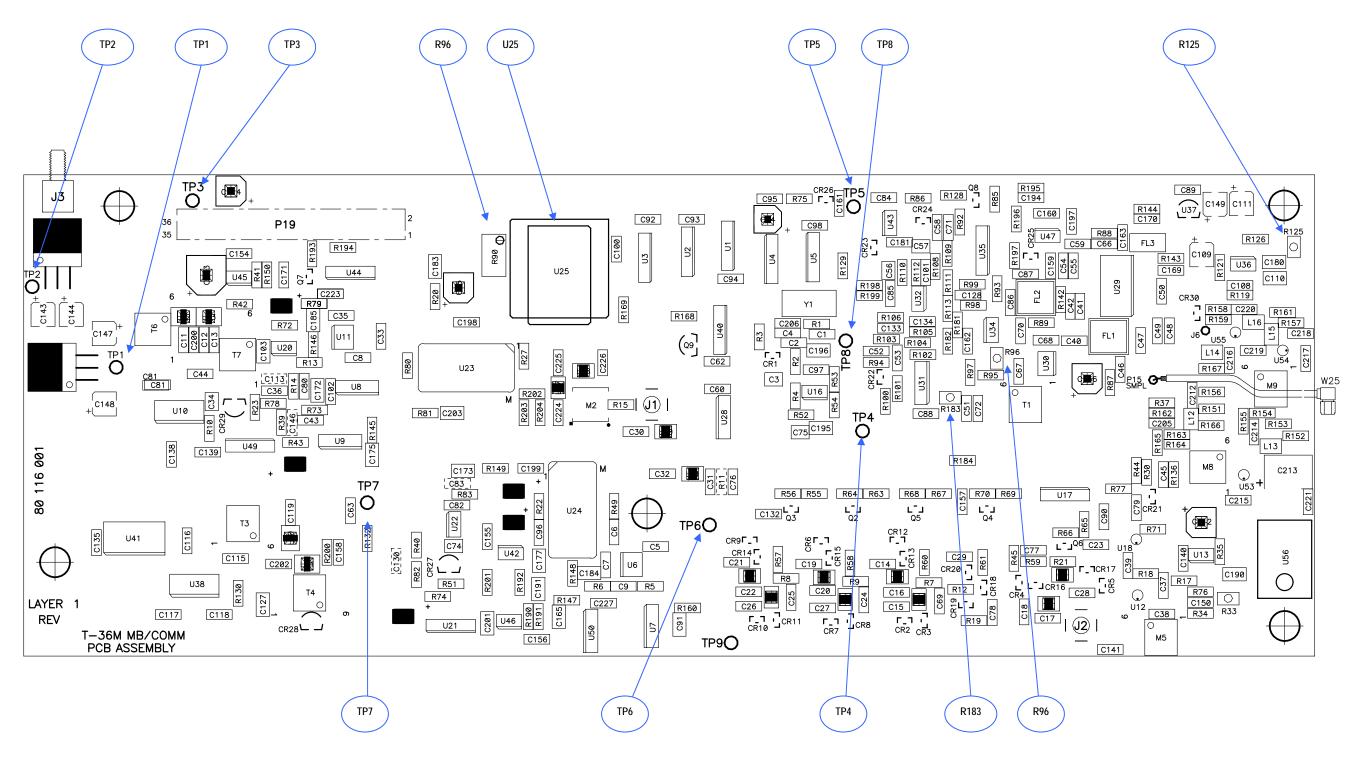
- 14. Apply the coefficient in the Calibration Mode. Vary the deviation of the signal generator from 1 kHz to 15 kHz. Verify the deviation reading tracks within ± 1 kHz.
- 15. Verify the FM Deviation measurement is within ± 1 kHz while the input signal level is varied from -10 dBm to +16 dBm.
- 16. Disconnect the signal generator and connect it to the **R/T** port. Run the Test Set in the COMM mode with the 10 k Termination Cap installed.
- 17. Set the signal generator output for +30 dBm.

It may be necessary to utilize a RF Amplifier for this Test.

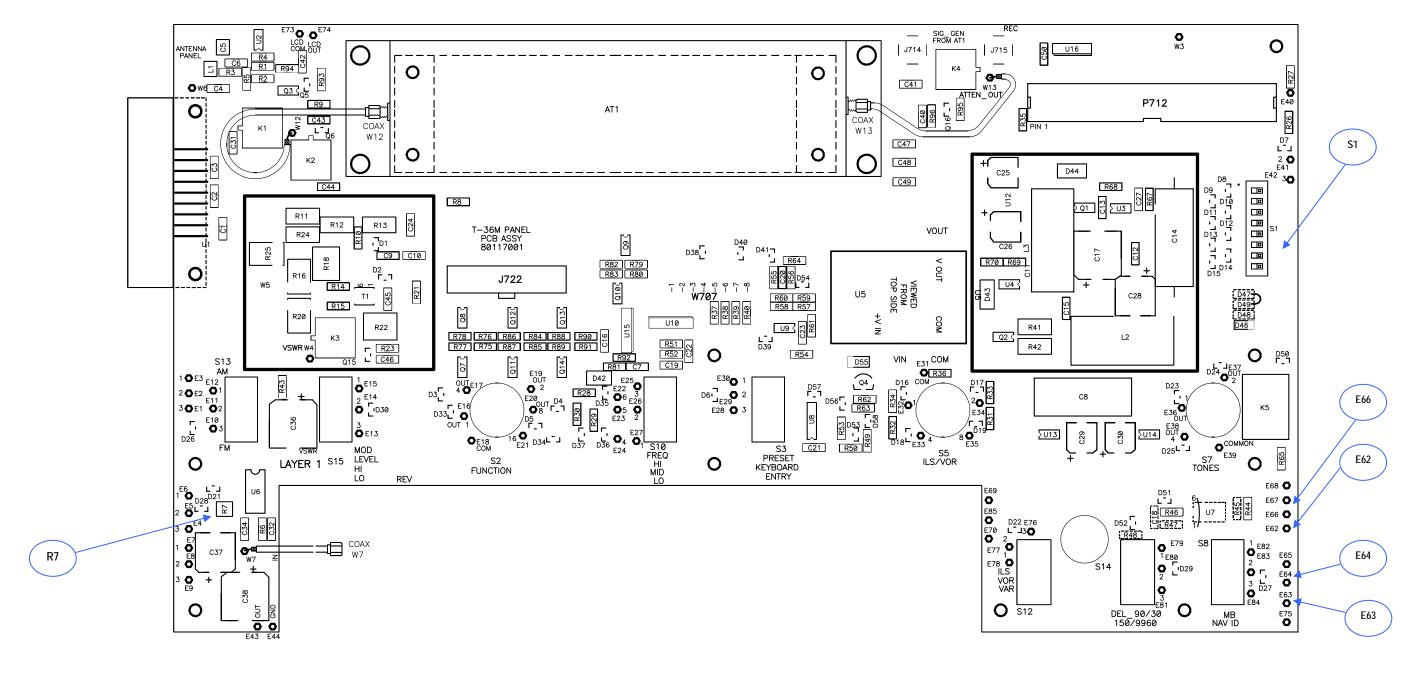
- 18. Adjust **R70** (L/V/G Board) until the Test Set switches to **XMIT-MEAS** mode. Verify that this occurs at <u>1W</u>.
- 19. Disconnect the signal generator and connect a calibrated transmitter (+40 dBm output with modulation *OFF*) with a 10 ft cable, *to the RT port*. Connect a 50 Ω load onto the **ANT** port.
- 20. Turn the transmitter *ON*. Verify the power reading is <u>10W ± 2W</u> at 120 & 150 MHz.
- 21. Verify the VSWR measurement by replacing the 50 Ω load with the following attenuators and take a VSWR measurement at the following frequencies.


4.8.3	Attenuator	VSWR Measurement			
	Frequency	120 MHz	150 MHz		
21a	3 dB	3.2 ± 0.5	3.2 ± 0.5		
21b	6 dB	1.6 ± 0.5	1.6 ± 0.5		
21c	10 dB	1.1 ± 0.5	1.1 ± 0.5		

22. To correct the VSWR measurement, calculate the coefficient based on VSWR3dB reading (for a 3 dB attenuator).


- 23. Apply the correction coefficient in the calibration mode. Repeat Step 21 22.
- 24. Plug a headset into the Test Set. Turn the UUT transmitter on with AM or FM modulation. Verify a tone. Adjust **R7** (panel/Switch PCB) for a convenient output level.
- 25. Turn the Test Set *OFF* and then back *ON* in normal COMM Mode. Begin timing and ensure that the Test Set turns OFF after 15 min ± 3 min of no operator input.
- 26. Remove the installed fuses from the Front Panel Fuse lock and replace them with 250 V, 0.25 A, FFT Fuses. Connect the Test Set to a 230 VAC Power Supply and verify Test Set operates under that Voltage Level. After confirming Operation, Reinstall the initial fuses.

Test and Adjustment Points, L/G/V Board

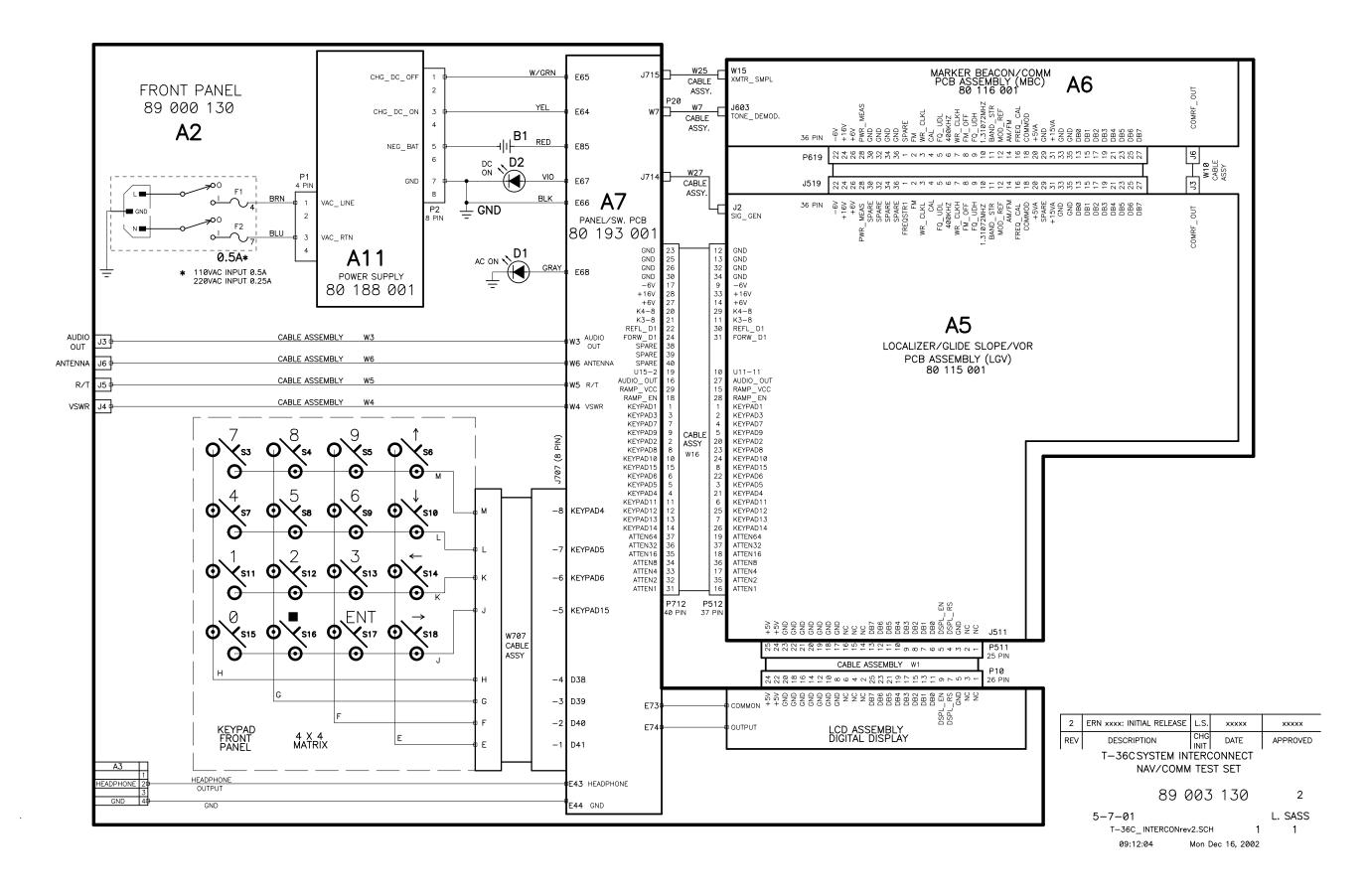

Figure 4-4

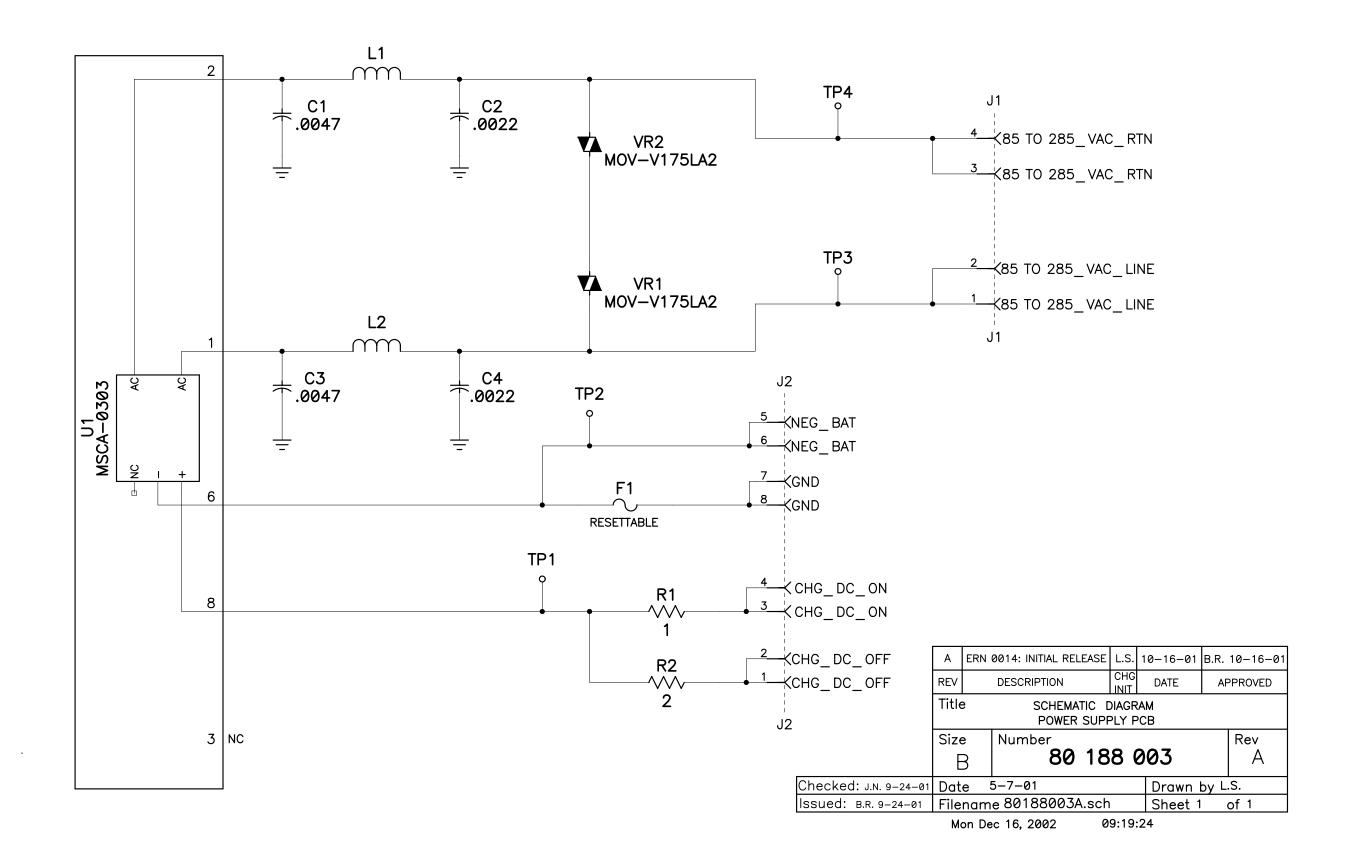
Test and Adjustment Points, MB/COMM Board

Figure 4-5

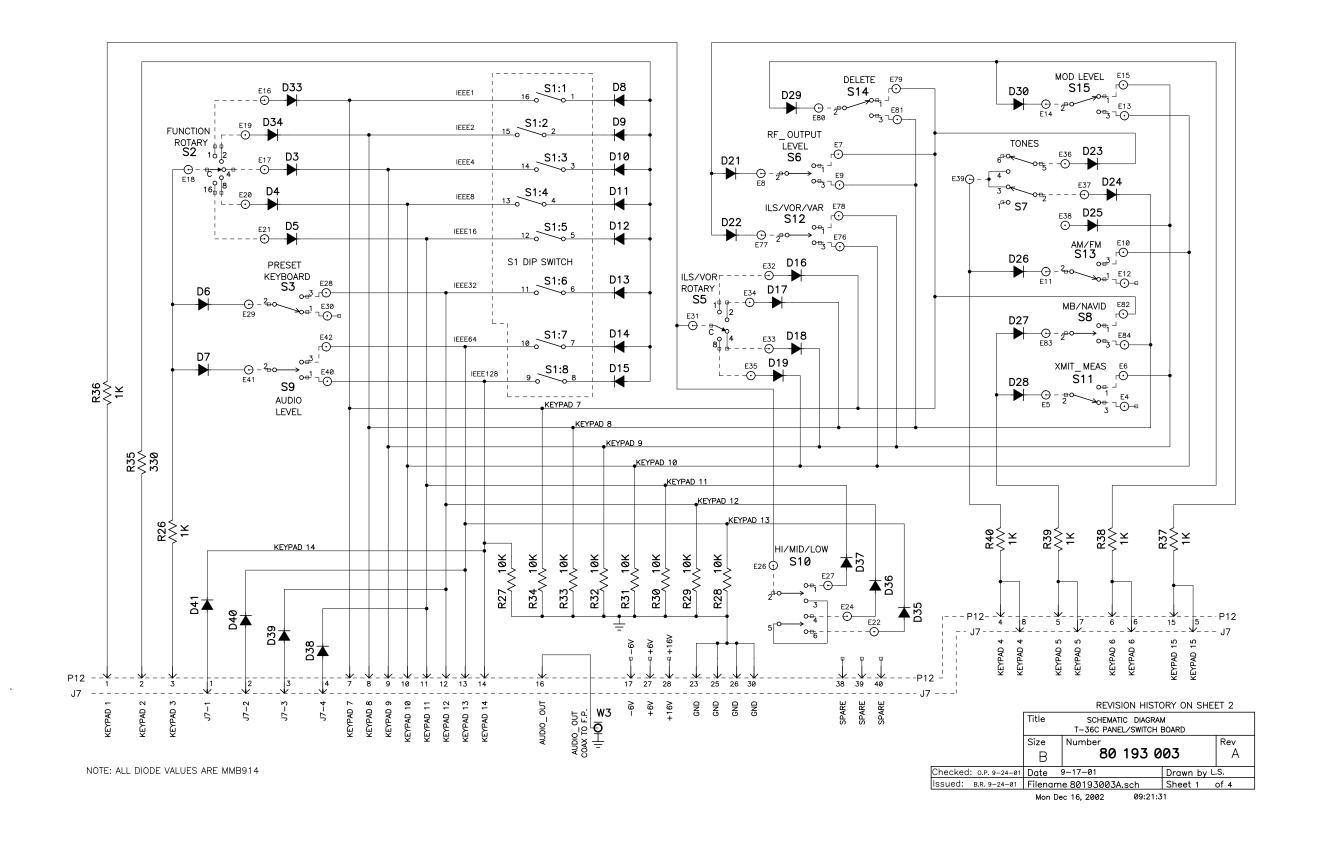
T-36C 90 008 077-2

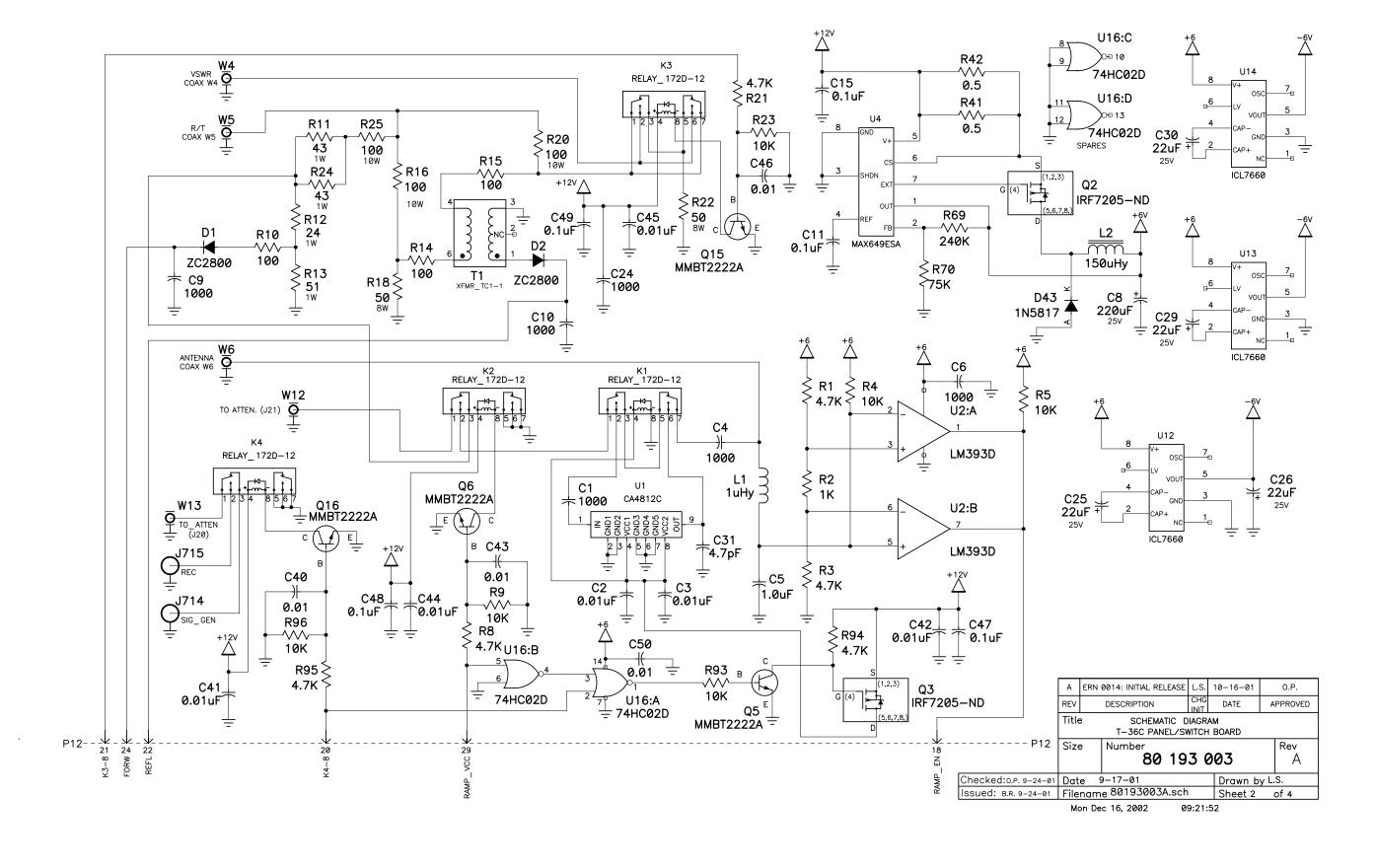
Test and Adjustment Points, PCB Assy. (A7)

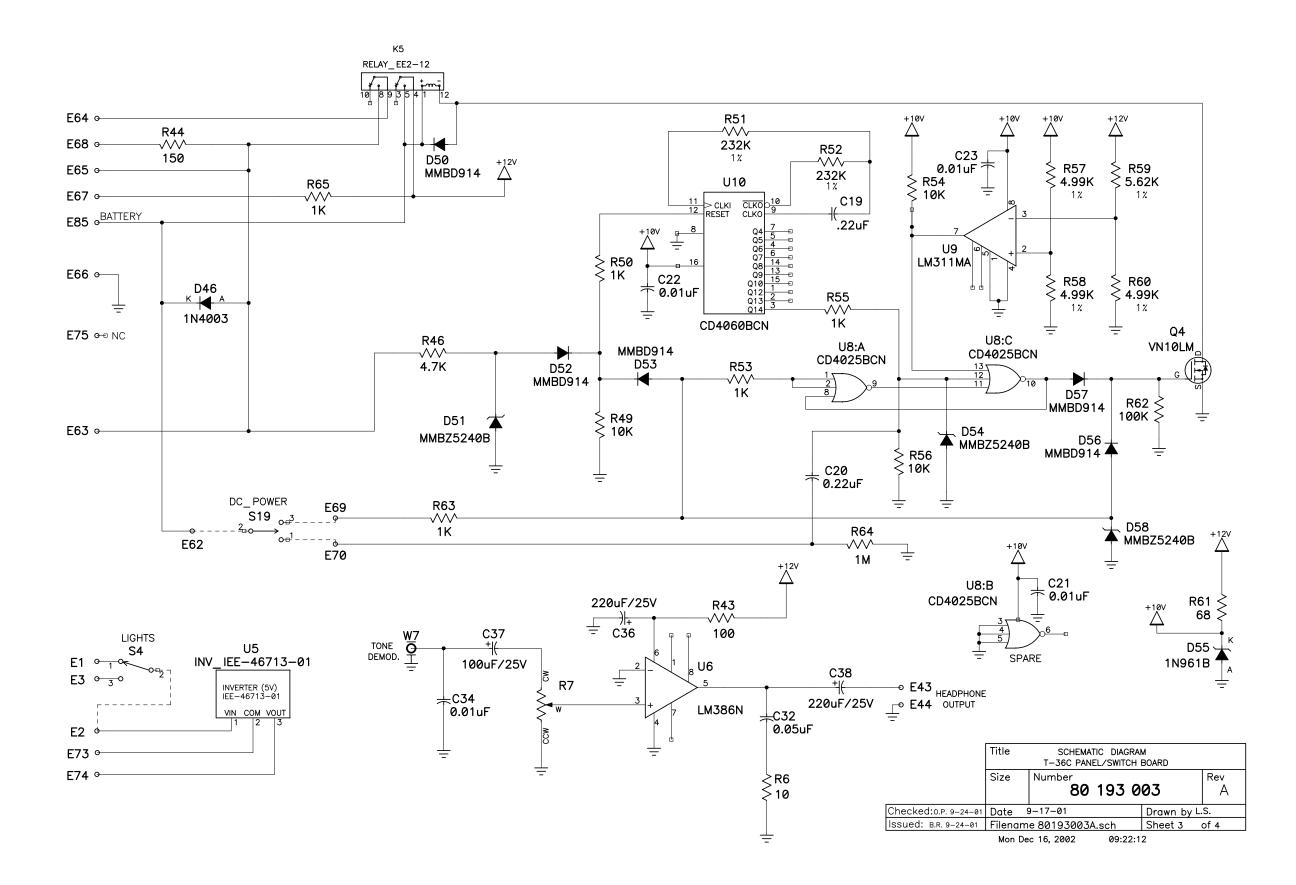

Figure 4-6

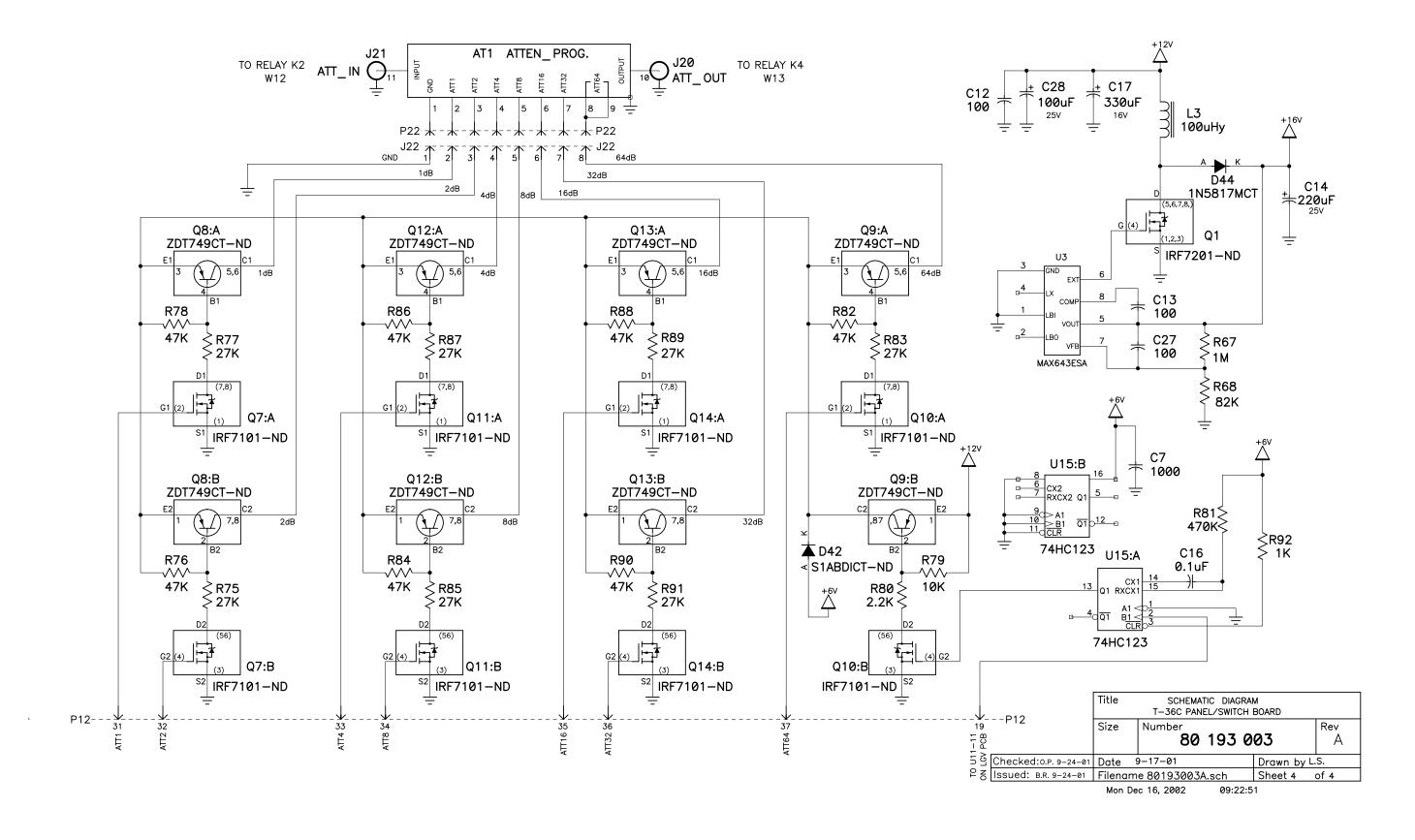

T-36C 90 008 077-2

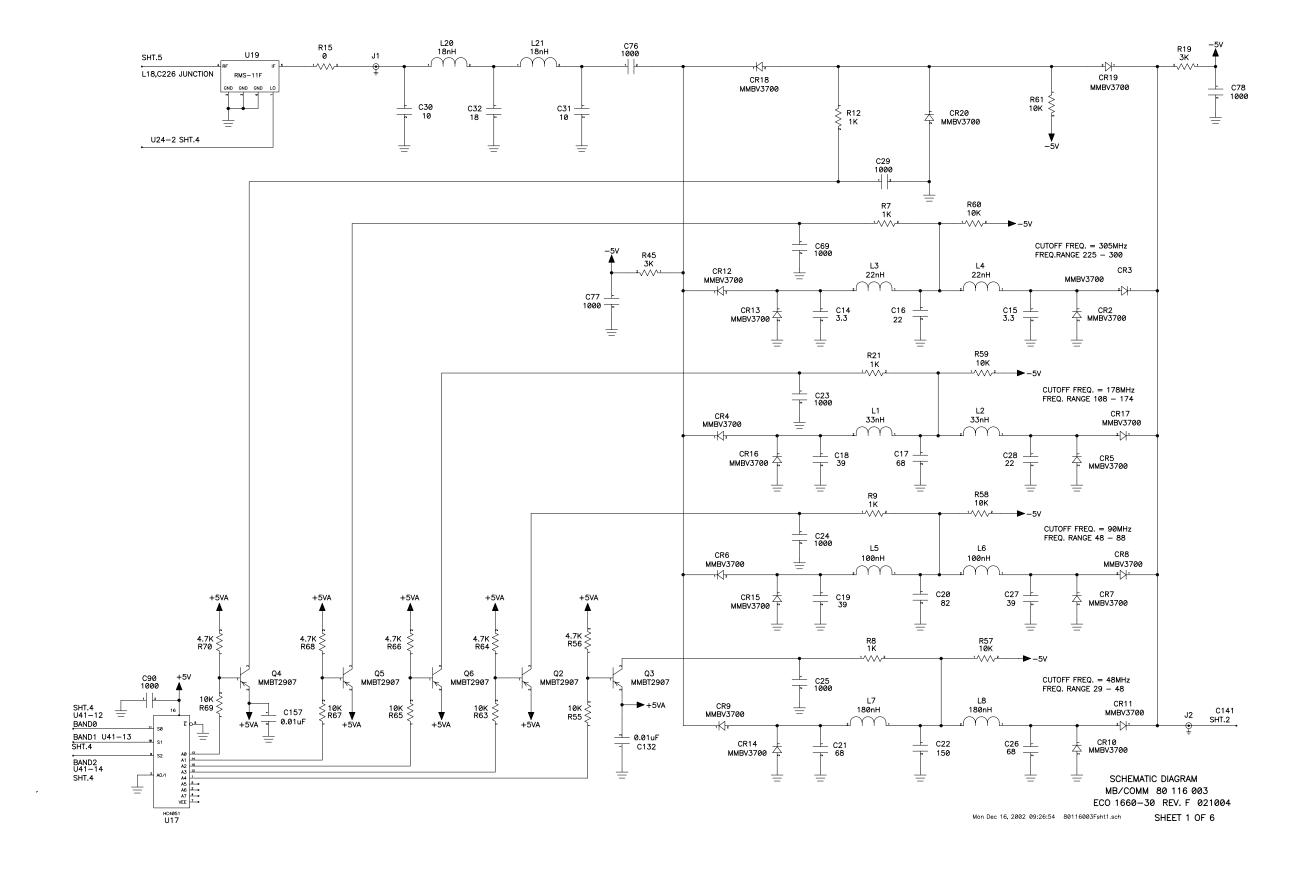
CHAPTER V

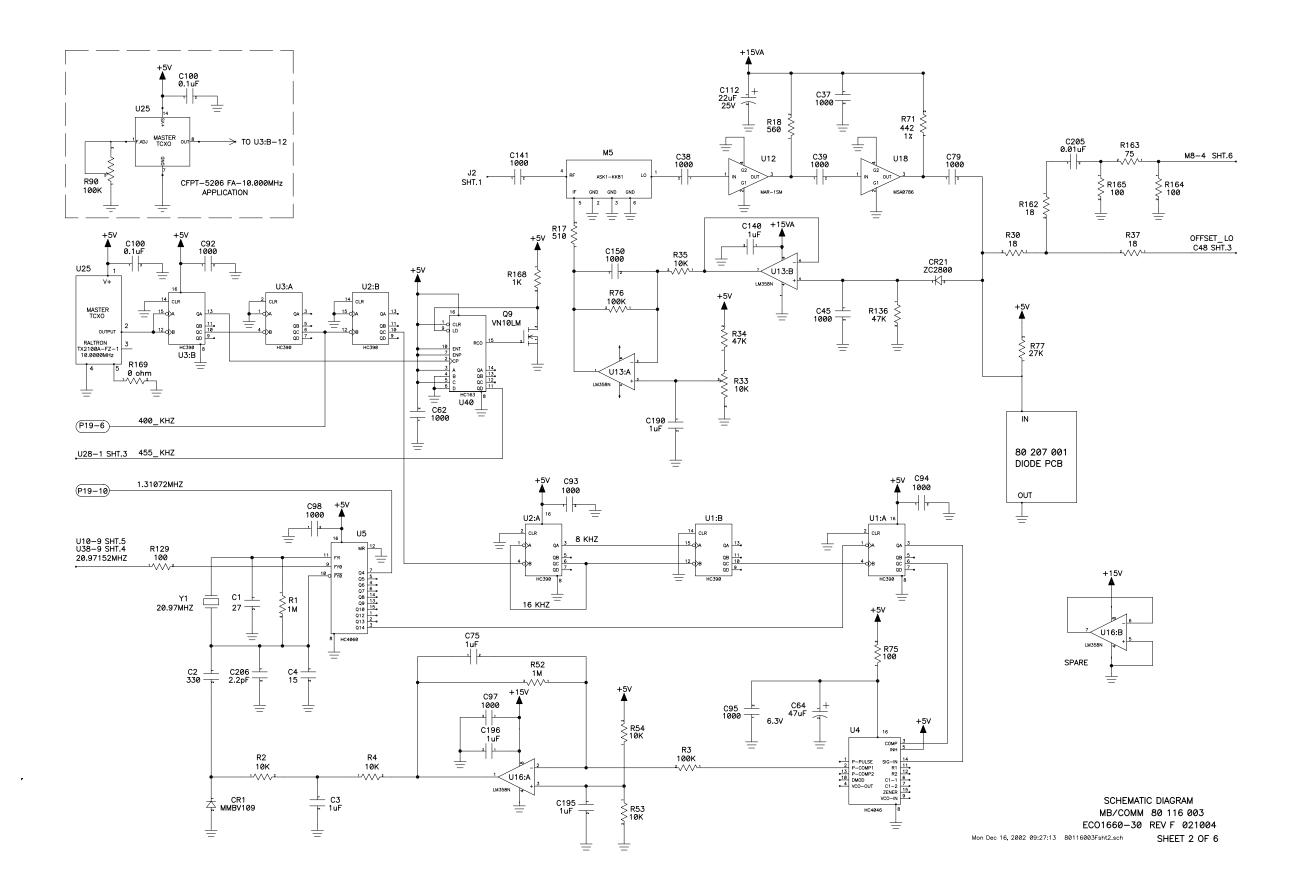

SCHEMATICS

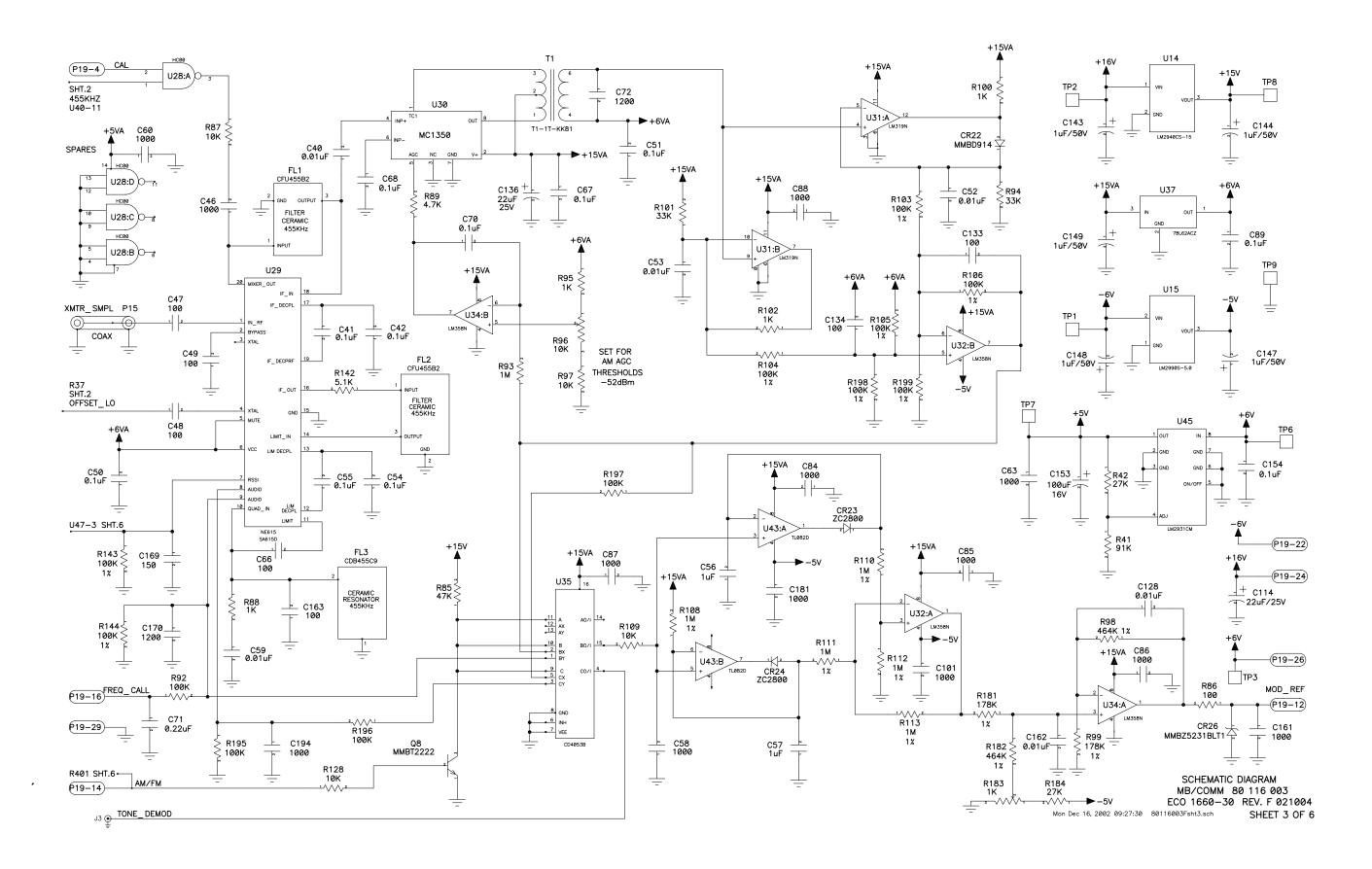




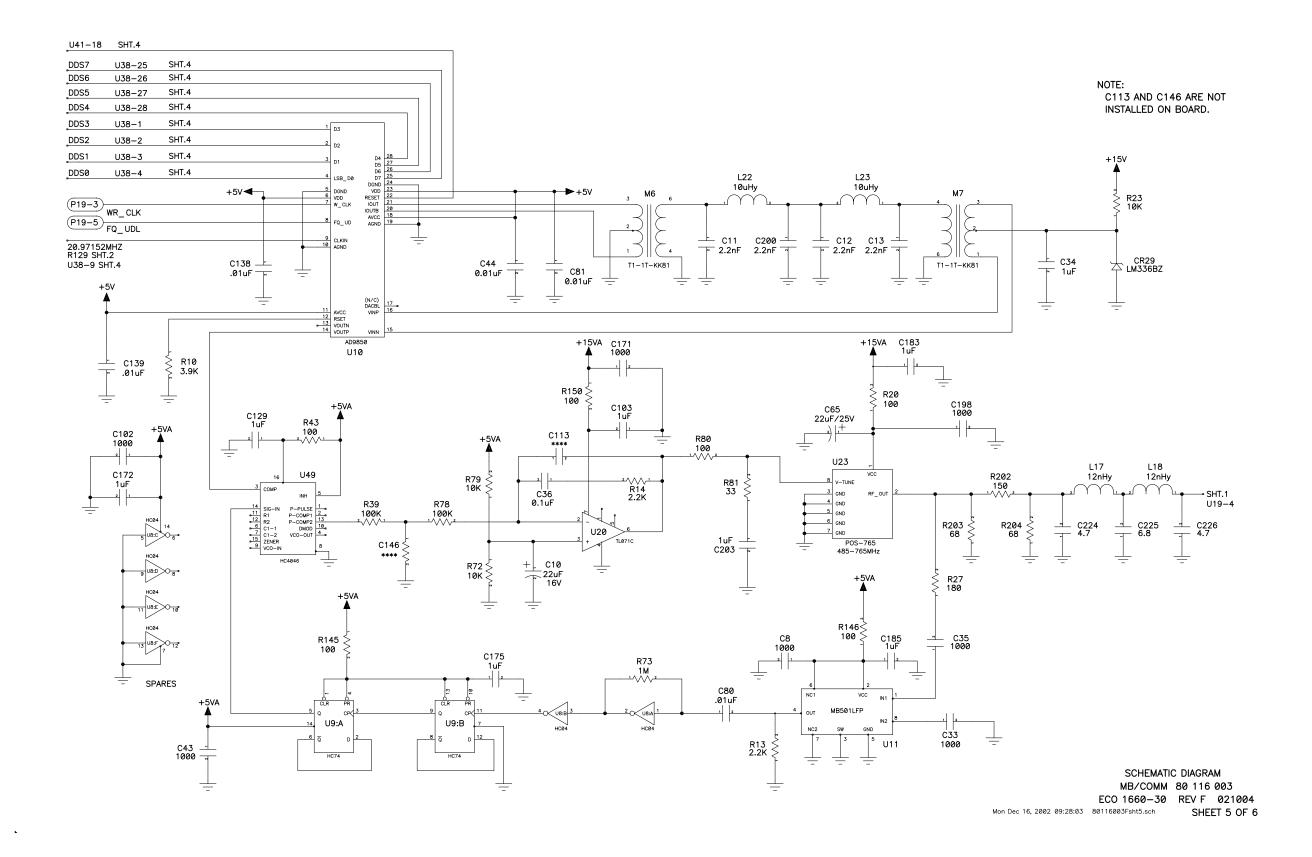


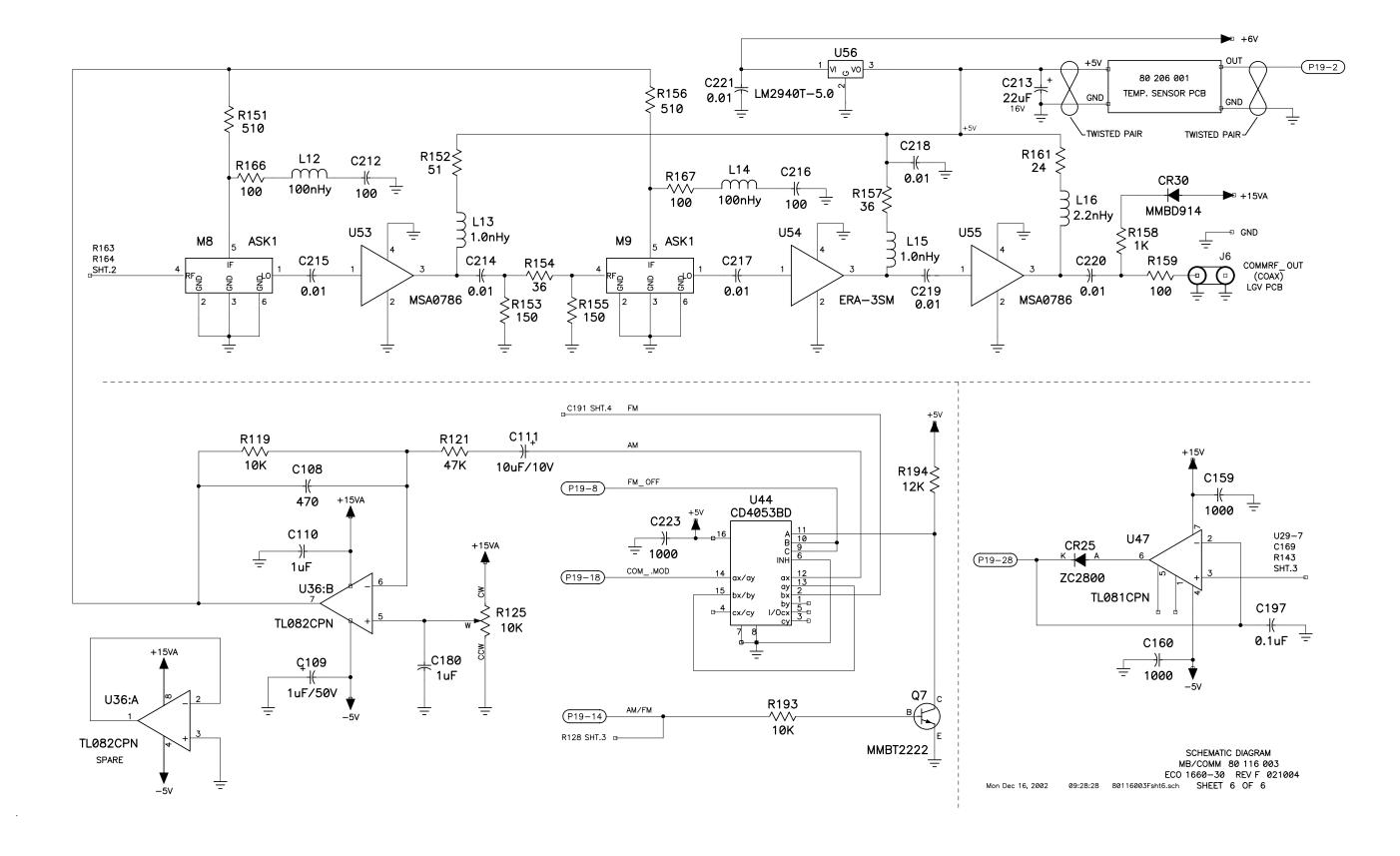

TIC

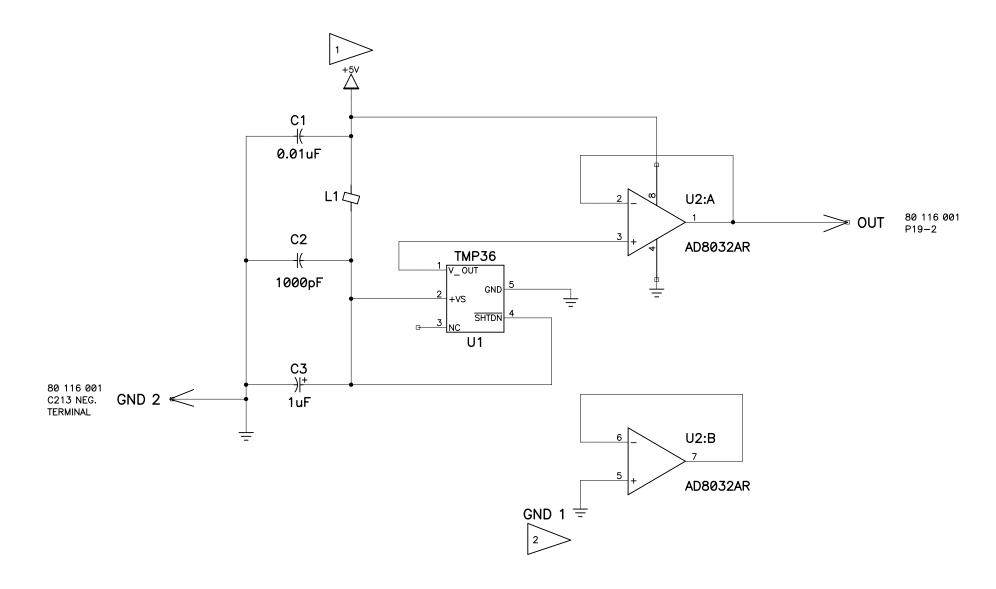


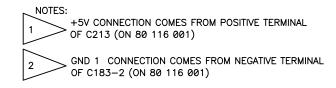


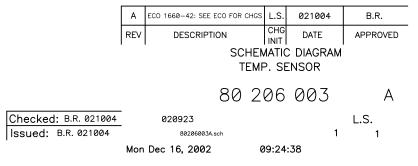


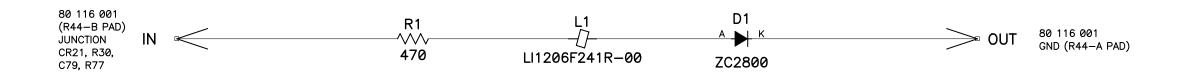

TIC

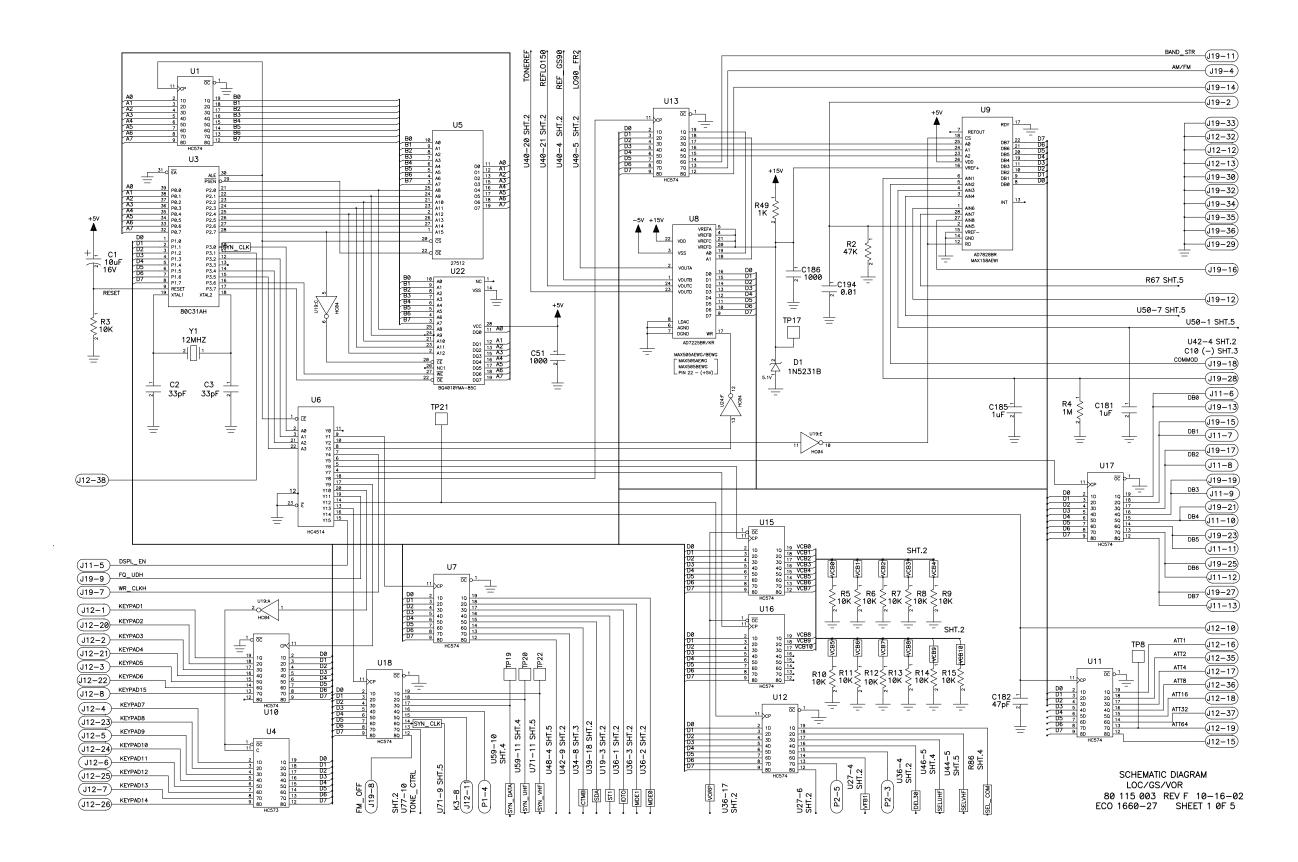


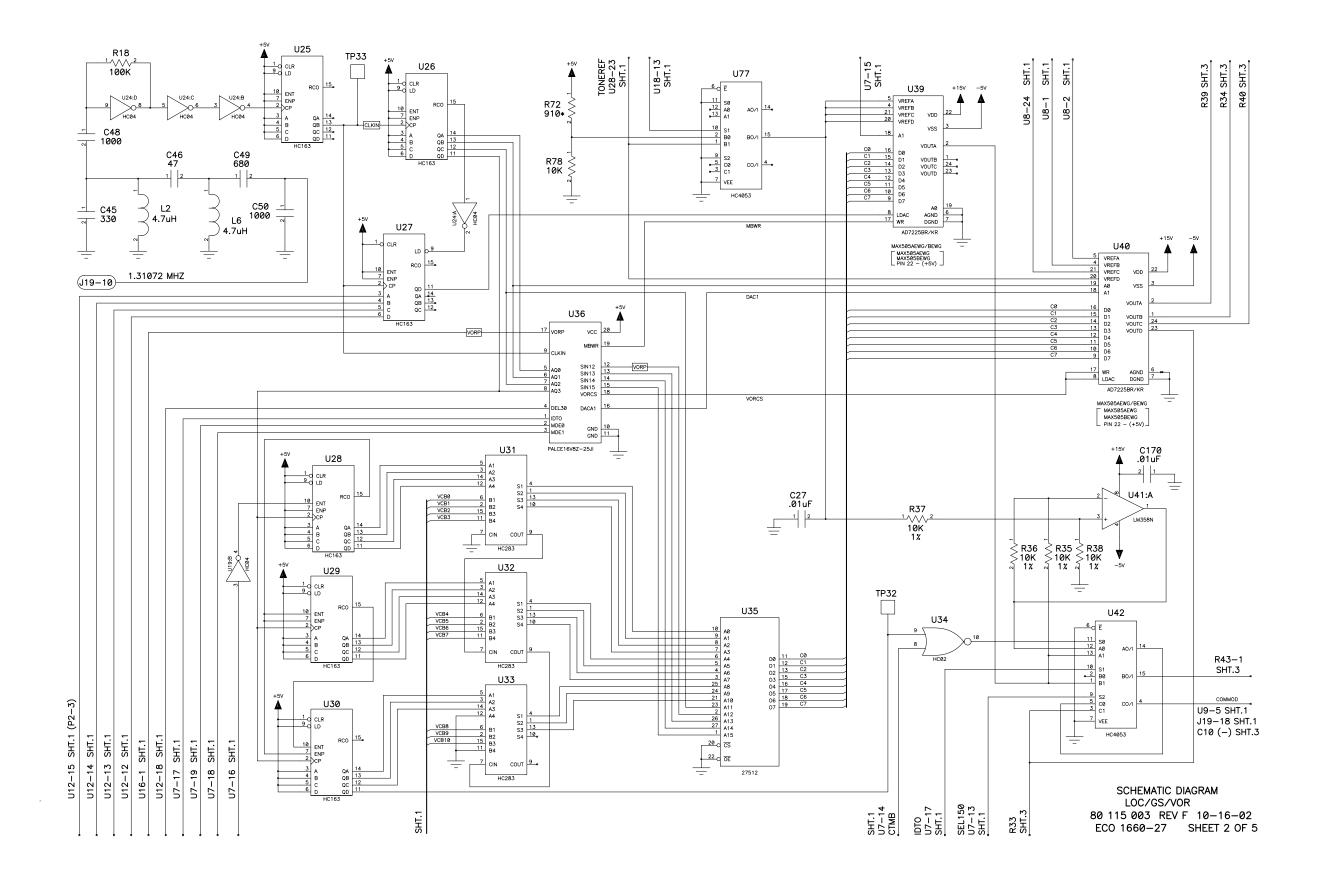


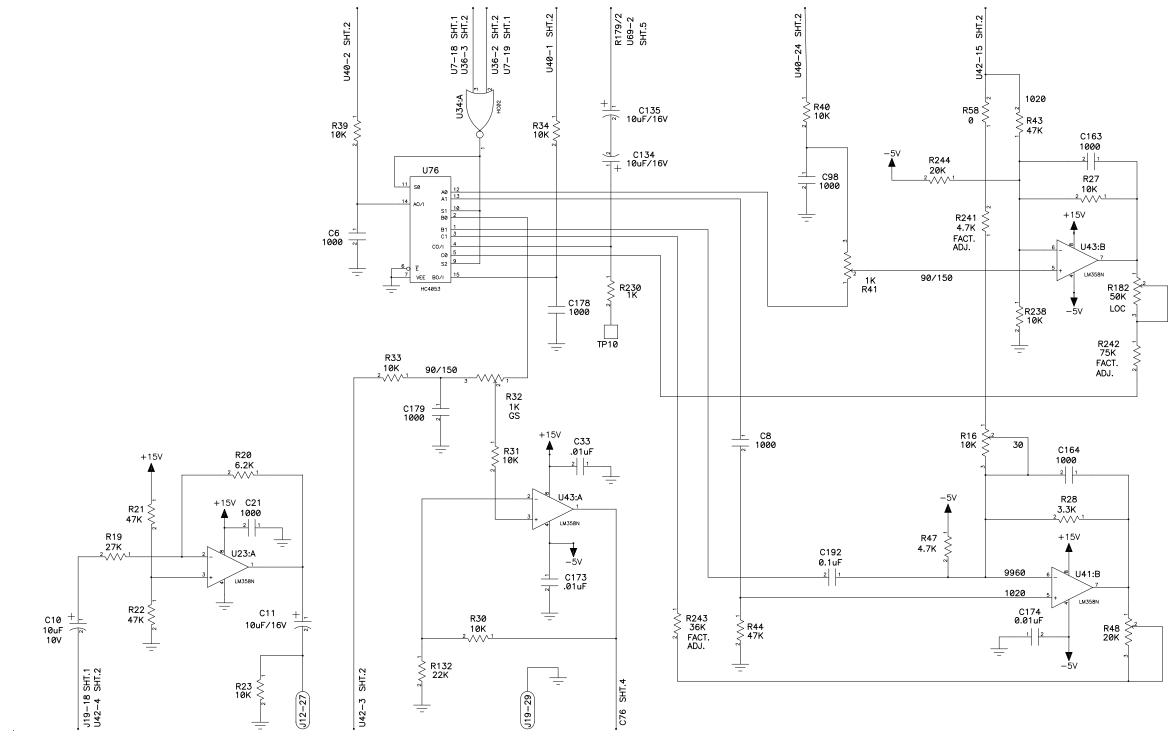

TIC



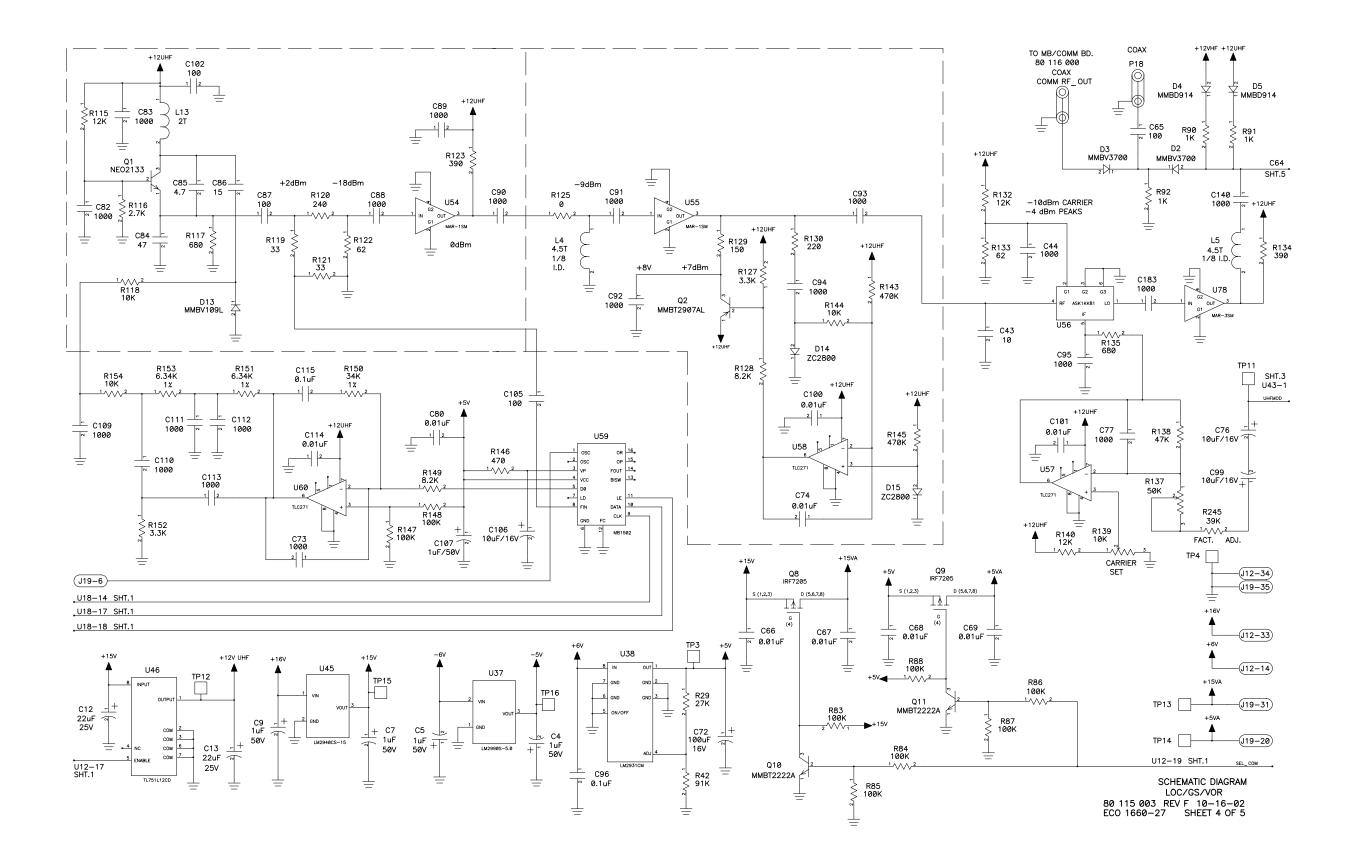

TIC

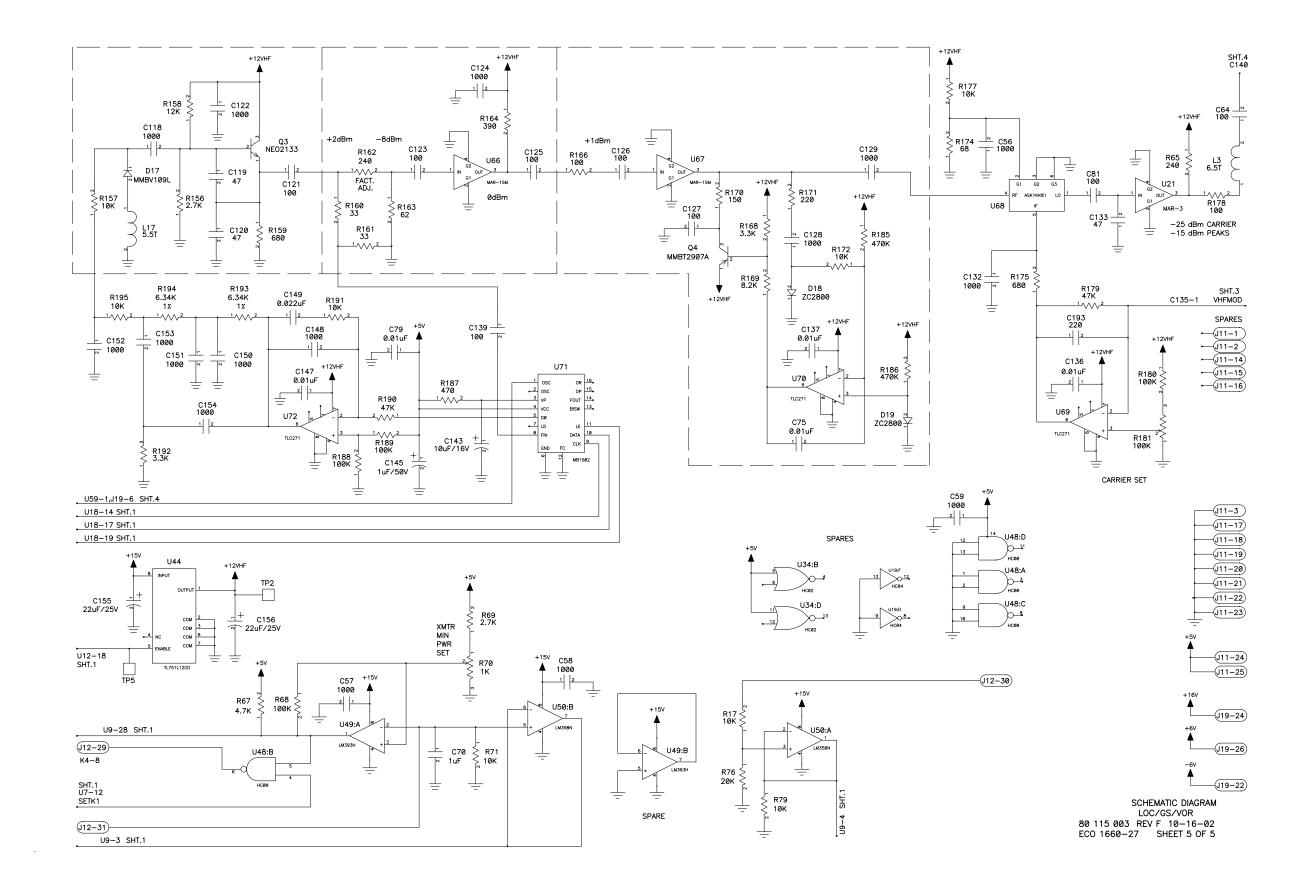





	Α	ECO 1660-38: INITIAL I	REL.	L.S.	021004	B.R.	
	REV DESCRIPTION CHG INIT DATE		APPROVED				
				IATIC	DIAGRAM BOARD	'	
		80	2	07	003		Α
Checked: B.R. 021004	-	020923				L.S.	
Issued: B.R. 021004		80207003A.sch			1	1	

09:25:23


Mon Dec 16, 2002



SCHEMATIC DIAGRAM LOC/GS/VOR 80 115 003 REV F 10-16-02 ECO 1660-27 SHEET 3 OF 5

CHAPTER VI

ILLUSTRATED PARTS BREAKDOWN PARTS LIST

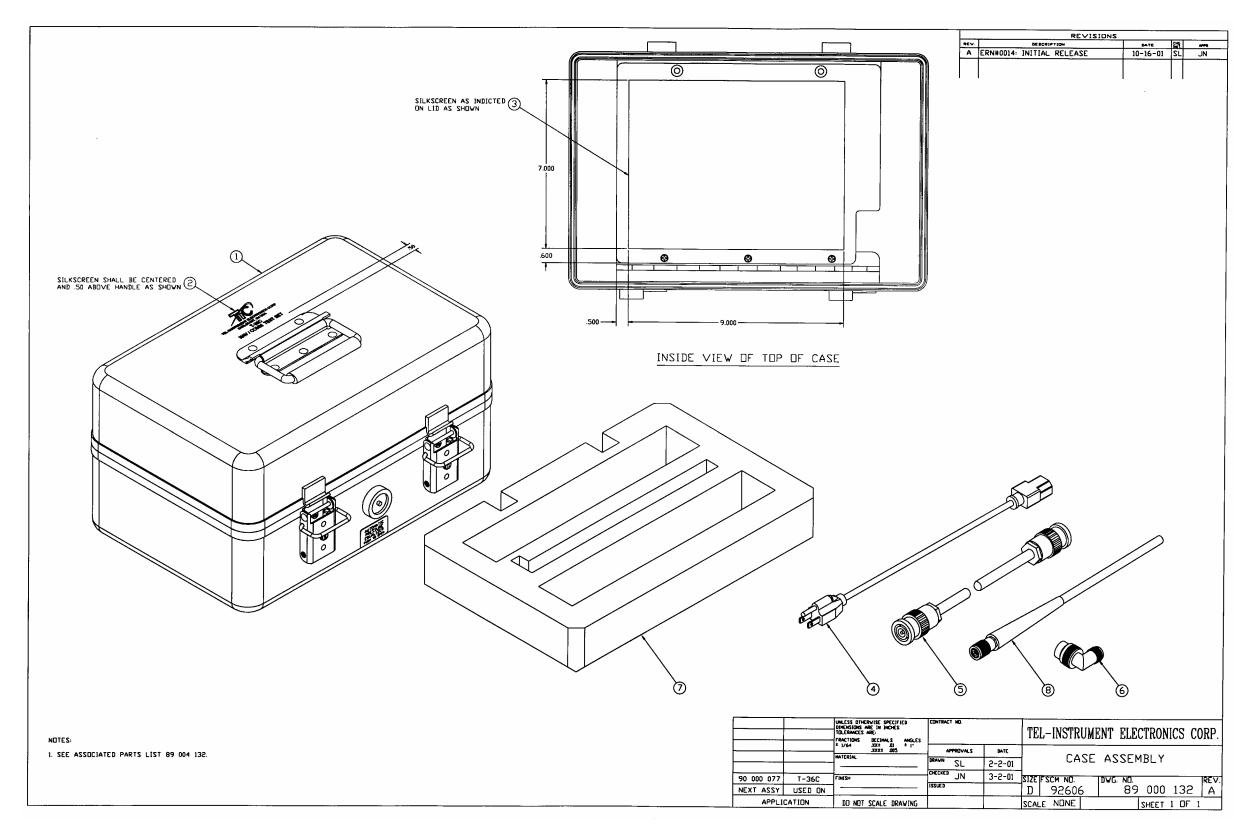
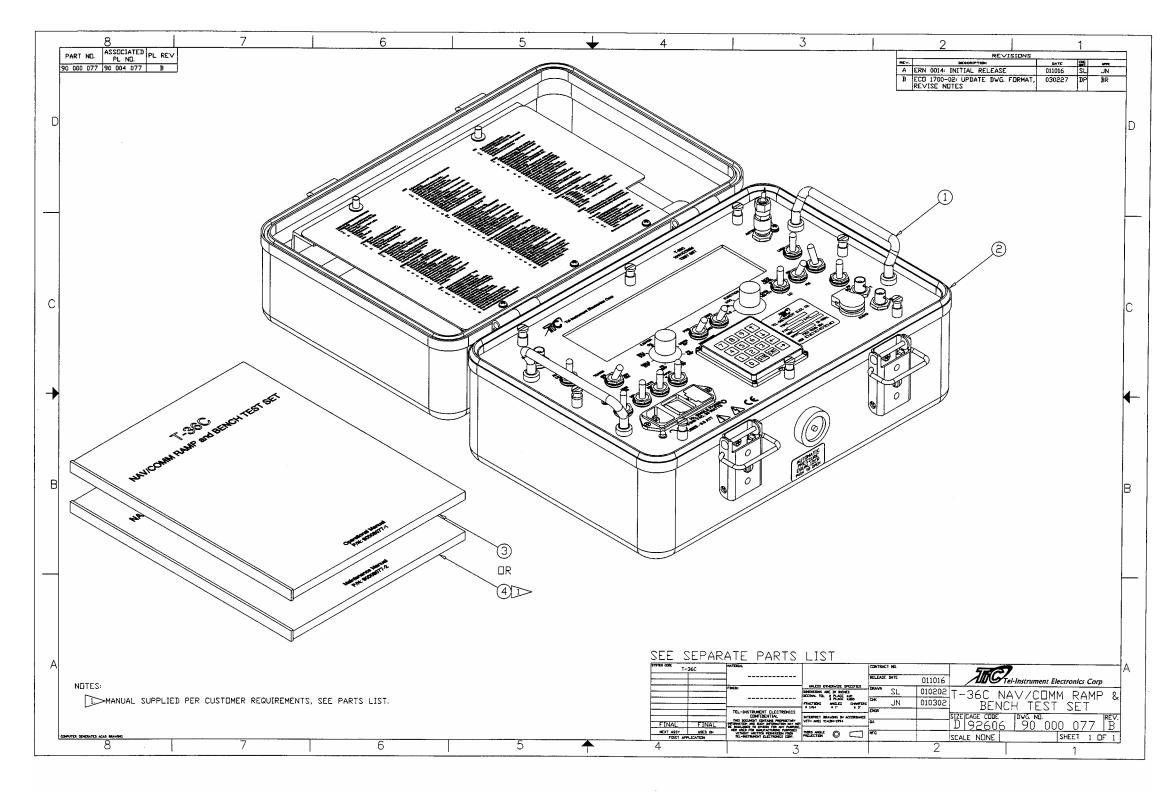
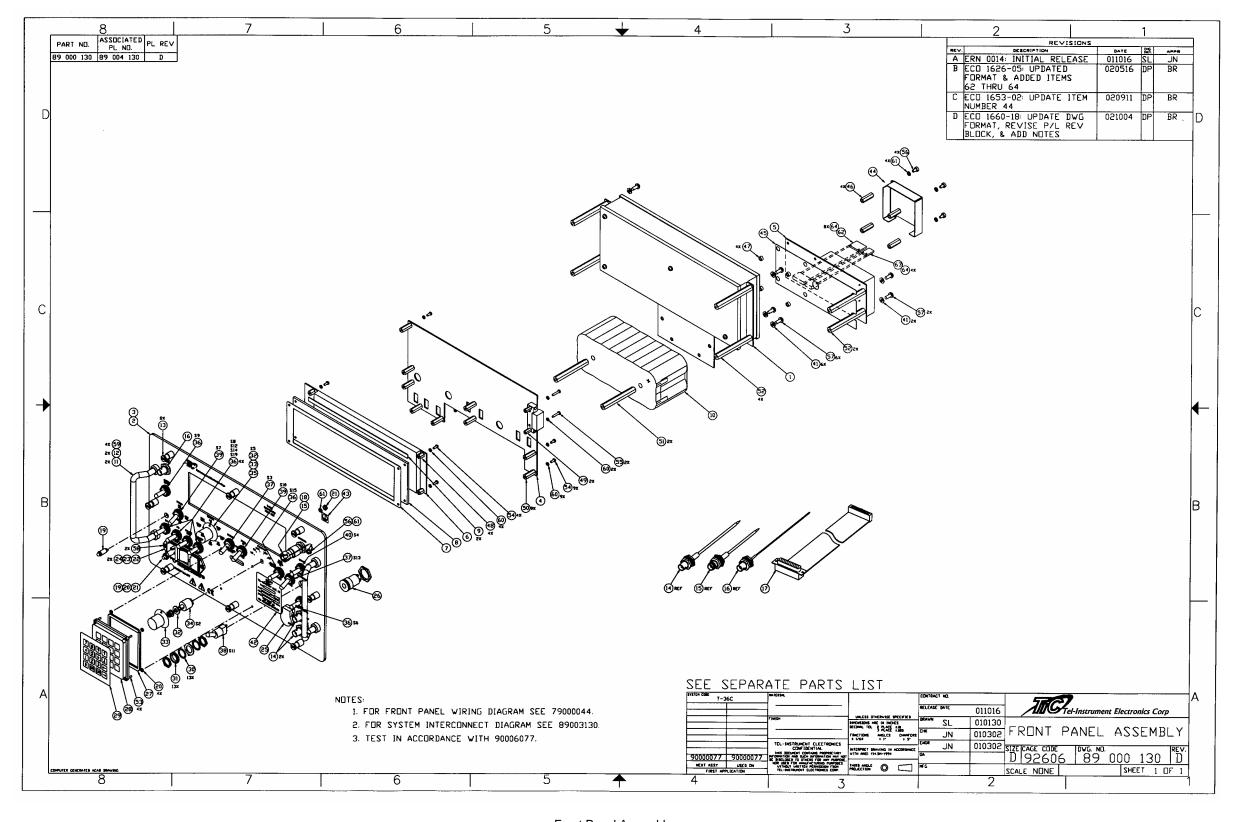



Figure 6-1

	Case Assembly			89 000 132 Rev A			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		CASE, DETAIL	64030034			1	
2		SILKSCREEN, CASE	57005028			1	
3		SILKSCREEN, INNER LID	57005031			1	
4		CABLE ASSEMBLY, A/C POWER CORD	75010025			1	
5		CABLE ASSEMBLY, DIRECT CONNECT	75010134			1	
6		ADAPTER, RIGHT ANGLE	48000013	KA-91-15	KINGS	1	
7		FOAM INSERT	31000009			1	
8		ANTENNA ASSEMBLY	40030003			1	



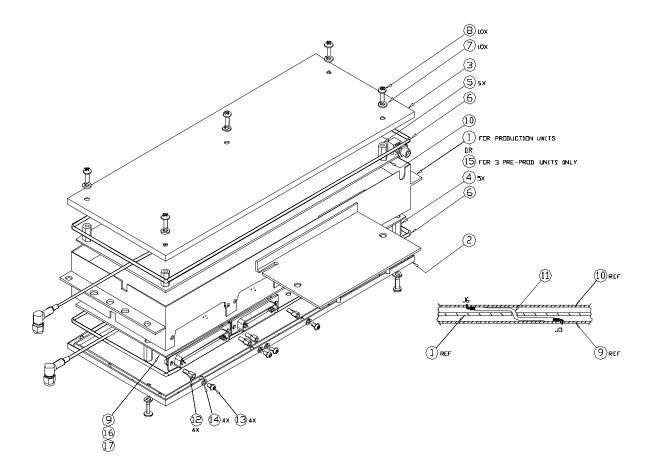
T-36C Test Set

Figure 6-2

	T-36C NAV/COMM Test Set			90 000 077 Rev A			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1	_	FRONT PANEL ASSEMBLY	89000130			1	
2		CASE ASSEMBLY	89000132			1	
3		OPERATIONS MANUAL	90008077-1			1	
4		Maintenance Manual	90008077-2			OPT	

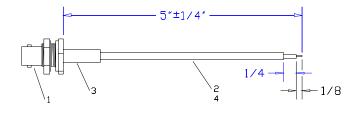
Front Panel Assembly

Figure 6-3



T-36	C Front F	Panel Assembly (1 of 2 (A2)	2)	89 000 130), Rev D	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		CHASSIS, SUB- ASSEMBLY	89000131			1
2		FRONT PANEL	61060048			1
3		SILKSCREEN, PANEL	57005027			1
4		PCB ASSEMBLY, PANEL/SWITCH	81117000			1
5		PCB ASSEMBLY, POWER SUPPLY	80188001			1
6		DISPLAY, LCD	45010001	3857-03-040	IEE	1
7		GASKET, RUBBER, LCD	55082012			1
8		FILTER, LCD DISPLAY	43015002			1
9		TAPE, FOAM, 1/4 x 8.00 LG.	31000011	4032	3M	2
10		BATTERY, 12V NI-CAD, 10 FULL-D	48071001	10TNR4D	TNR	1
11		HANDLE	56025006	BZ-130-1	VEMALINE	2
12		FERRULE	31020035	288-09-ALC	PEM	4
13		FASTENER, PANEL	56020001	PFC2-832-94		8
14		CABLE ASSEMBLY, PANEL/YSWR/ANT/FP	75010110			2
15		CABLE ASSEMBLY, PANEL/ANT/FP	75010111			1
16		CABLE ASSEMBLY, PANEL/AUDIO OUT/FP	75010112			1
17		CABLE ASSEMBLY, LCD DISPLAY/LGV BD.	75010130			1
18		TERMINATION CAP ASSEMBLY	88001014			1
19		LED INDICATOR, SNAP- IN (GREEN)	45001015	559-0201-007	DIALIGHT	2
20		NUT, HEX, #2-56	53010003	MS35649-224	MS35649- 224	4
21		NUT, HEX, SMALL PATTERN, #6-32	53010007	NAS671C-6	NAS671C-6	1
22		A/C RECEPTACLE	48035010	KD14.1101.151	SCHURTER	1
23		FUSE DRAWER	48035008	4303.2401	SCHURTER	1
24		FUSE, 500mA /250V, SUPER TIME LAG	45100026	34.504	SCHURTER	2
25		COVER, PHONE JACK ASSEMBLY	88001009			1
26		JACK, PHONE	48050003	TJT-120	NEXUS	1
27		GASKET, KEYBOARD	55082022	88M2015-1	GRAYHILL	1
28		KEYBOARD	49010001	88BB2	GRAYHILL	1
29		OVERLAY, KEYBOARD	49010002	88001	GRAYHILL	1
30		WASHER, SEALING, SWITCH	52063003	60064	MFS	13

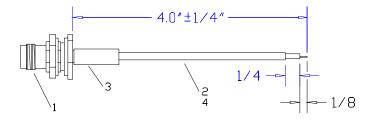
T-36C Front Panel Assembly (2 of 2) 89 000 130, Rev D						
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
31		WASHER (.477 DIA)	52063004	396020-SS-0	ASMCO	13
32		WASHER, SEALING	52063002	93783A029	McMASTER- CARR	2
33		KNOB	57025023	MS91528-1II1B	ELEC HARDWARE	2
34	S2	SWITCH, ROTARY	46020021	513385	GRAYHILL	1
35	S5	SWITCH, ROTARY	46020019	26ASD45-01-1- AJS	GRAYHILL	1
36	\$6,\$8,\$9,\$ 12,\$14,\$15, \$19	SWITCH, ROTARY	46027516	7105-TCWZQE	C&K	7
37	S3, S13	SWITCH, TOGGLE	46027520	7101-TCWZQE	C&K	2
38	S11	SWITCH, TOGGLE	46027517	7108-TCWZQE	C&K	1
39	S7, S10	SWITCH, TOGGLE	46027529	7211-TCWZQE	C&K	1
40	S4	SWITCH, TOGGLE	46027521	7101-TCWZQE	C&K	1
41	S3, S13	WASHER, SPLIT-LOCK, #8	52020003	MS35338-137	MS35338- 137	8
42		NAMEPLATE, GENERIC	57030010			1
43		LABEL, SAFETY FUNCTION	57031011	PESC-H-EC	PANDUIT	1
44		COVER, PROTECTIVE	62040059			1
45		INSULATOR, PCB (FISH PAPER)	31000020			1
46		STANDOFF, 1/4 HEX x .812 LG.	52400023	2109-632-SS- 20	RAF	4
47		SPACER, 1/4 ROUND x .125 LG.	52100013	1122-6-A-7	RAF	4
48		STANDOFF, 1/4 HEX x .312 LG.	52400008	2101-440-SS- 20	RAF	4
49		STANDOFF, 3/16 HEX x .438 LG.	52400038	2056-440-A-7	RAF	2
50		STANDOFF, 1/4 HEX x .750 LG.	52400035	2108-440-SS- 20	RAF	9
51		STANDOFF, 1/4 HEX x 2.500 LG.	52400001	2132-832-SS- 20	RAF	2
52		STANDOFF, 5/16 HEX x 2.750 LG.	52400028	2201-832-SS- 20	RAF	6
53		SCREW, PAN HD, #2-56 x .438 LG.	50110032	MS51957-6	MS51957-6	4
54		SCREW, PAN HD, #4-40 x .250 LG.	50110007	MS51957-13	MS51957-13	13
55		SCREW, PAN HD, #4-40 x .500 LG. SCREW, PAN HD, #6-32 x	50110002	MS51957-17	MS51957-17	2
56		.250 LG. SCREW, PAN HD, 8-32 x .375	50110015	MS51957-26	MS51957-26	5
57		LG. SCREW, FLAT HD, 82	50110013	MS51957-43	MS51957-43	8
58		DEG.,#4-40 x .375 LG. SCREW, FLAT HD, 82	50140015	MS51959-15	MS51959-15	2
59		DEG.,#8-32 x .500 LG.	50140014	MS51959-45	MS51959-45 MS35338-	4
60		WASHER, SPLIT-LOCK, #4	52020002	MS35338-135	135 MS35338-	15
61		WASHER, SPLIT-LOCK, #6	52020001	MS35338-136	136	6
62		CONNECTOR, 8 PIN	48000090	104257-7	AMP	1
63		CONTACTS CONNECTOR	48000089	104257-3	AMP	1
64		CONTACTS, CONNECTOR	46053002	104480-8	AMP	12

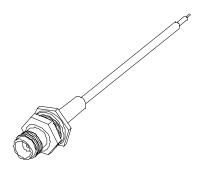


Chassis Assembly

Figure 6-4

	Chassis Assy.			89 000 131, Rev C			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		CHASSIS, RF AND DIGITAL	62000047			1	
2		COVER, LGV	62040036			1	
3		COVER, MBC	62040035			1	
4		STANDOFF, 1/4 HEX x .750 LG.	52400063	4538-632-SS- 20	RAF	5	
5		STANDOFF, 1/4 HEX x .500 LG.	52400029	4534-632-SS- 20	RAF	5	
6		SHIELD, SPIRAL	55060001	SS-06	SPIRA	AR	
7		SCREW, PAN HD, #6-32 x .375 LG.	50110004	MS51957-28	MS	10	
8		WASHER, SPLIT-LOCK, #6	52020001	MS35338-136	MS	10	
9		PCB ASSEMBLY, LOC/GS/VOR	80115001			1	
10		PCB ASSEMBLY, MB/COMM	80116001			1	
11		CABLE, COAX, RG-316/U	71110006	53284	OLYMPIC	AR	
12		STANDOFF, 3/16 HEX, "D" CONN.	52400032	4750	RAF	4	
13		SCREW, PAN HD, #4-40 x .188 LG.	50110008	MS51957-12	MS	4	
14		WASHER, SPLIT-LOCK, #4	52020002	MS35338-135	MS	4	
15		CHASSIS, RF AND DIGITAL (MODIFICATION)	62000048			1	
16		PROGRAMMED MEMORY	48077034 -03			1	
16		IC PROM ERASEABLE	43016001			1	
17		PROGRAMMED MEMORY (SINE)	48077003 -01			1	
17		IC PROM ERASEABLE	43016001			1	

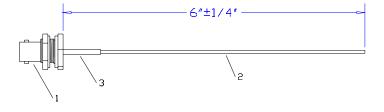


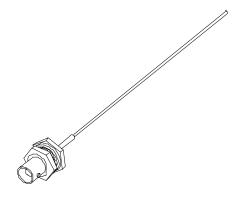


Cable Assembly, Panel BD/VSWR/R/T/ANT/FP (W4,W5)

Figure 6-5

Cable Assembly, Panel BD/VSWR/R/T/ANT/FP (W4,W5)			75 010 110, Rev B				
Item No.	Ref. Desig.	Nomenclature	Te	el Desig.	Vendor P/N	Resource	Qty
1		Connector, BNC	48	8040043	BNC-50-2- 20	SUHNER	1
2		Wire, Coax	71	111002	FLEX086	EZ- FORMCABLE	A/R
3		Shrink Tubing, Black	73	000014	FIT-321-1/4	ALPHA	3/4"
4		Shrink Tubing, Clear	73	3000010	FIT-221-1/8	ALPHA	A/R

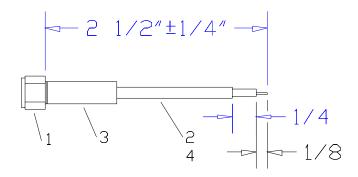


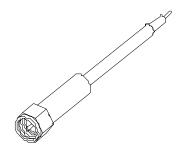


Cable Assembly, Panel BD/Antenna/FP (W6)

Figure 6-6

		Assembly, Panel ntenna/FP (W6)		75 010 111	I, Rev C	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		CONNECTOR, TNC	48040044	24TNC-50-2-20	SUHNER	1
2		WIRE, COAX	71111002	EZ-FLEX-086	EZ-FORM	AR
3		SHRINK TUBING, BLACK	73000014	FIT-321-1/4	ALPHA	AR
4		SHRINK TUBING, CLEAR	73000010	FIT-221-1/8	ALPHA	AR
5		SOFT SOLDER	SN-60-63	QQ-S-571		AR

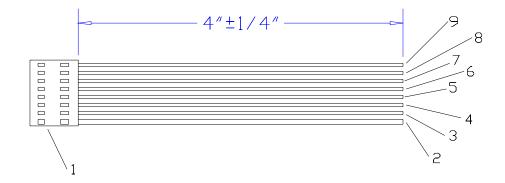


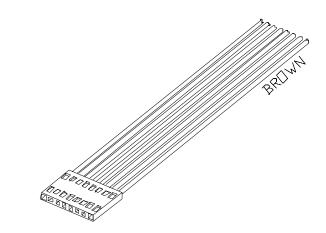


Cable Assembly, Panel BD/Audio Out/FP (W3)

Figure 6-7

Cable Assembly, Panel BD/Audio Out/FP (W3)				75 010 112	2, Rev C	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		Connector, BNC	48040043	24BNC-50-2-20	SUHNER	1
2		Wire, Teflon, White	72722010	307-9	OLYMPIC	A/R
3		Shrink Tubing, Clear	73000008	FIT-221-3/32	ALPHA	3/4"

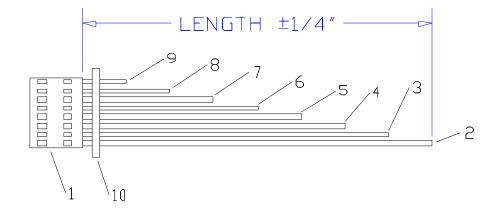




Cable Assembly, Relay to Attenuator (W12,W13)

Figure 6-8

Cable Assembly, Relay to Attenuator (W12,W13)			or	75 010 113, Rev C			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		Connector, Straight, SMA	48040040	142-0693-001 OR EQUIV.	EFJ	1	
2		Wire, Coax	71111006	EZ-FLEX-086	EZ-FORM CABLE	A/R	
3		Shrink Tubing, Black	73000014	FIT-321-1/4	ALPHA	3/4"	
4		Shrink Tubing, Clear	73000010	FIT-221-1/8	ALPHA	A/R	



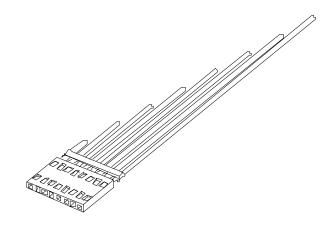
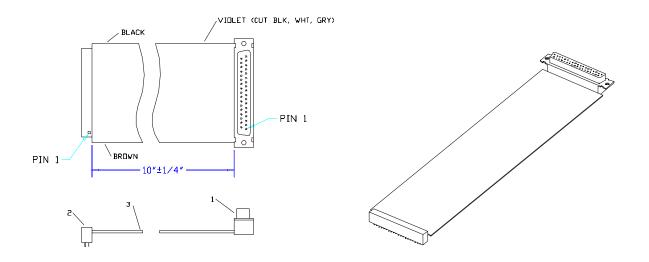

Cable Assembly, Panel BD/Keypad/FP (W3)

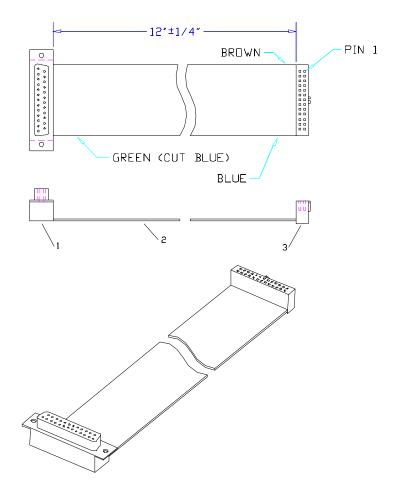
Figure 6-9

Cable Assembly, Panel BD/Keypad/FP (W3)				75 010 118, Rev C			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		Connector, Receptacle, 8 Pin	48000081	104439-7	AMP	1	
2		Wire, Teflon, Brown	72722002	307-1	OLYMPIC	A/R	
3		Wire, Teflon, Red	72722003	307-2	OLYMPIC	A/R	
4		Wire, Teflon, Orange	72722004	307-3	OLYMPIC	A/R	
5		Wire, Teflon, Yellow	72722005	307-4	OLYMPIC	A/R	
6		Wire, Teflon, Green	72722006	307-5	OLYMPIC	A/R	
7		Wire, Teflon, Blue	72722007	307-6	OLYMPIC	A/R	
8		Wire, Teflon, Violet	72722008	307-7	OLYMPIC	A/R	
9		Wire, Teflon, Gray	72722009	307-8	OLYMPIC	A/R	



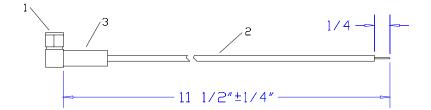
Cable Assembly, Attenuator Control (W17)

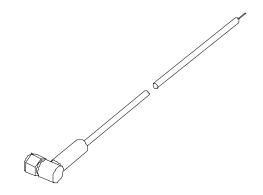
Figure 6-10


Cab	Cable Assembly, Attenuator Control (W17)			75 010 119, Rev C			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		Connector, Receptacle, 8 Pin	48000081	104439-7	AMP	1	
2		Wire, Teflon, Brown	72722002	307-1	OLYMPIC	A/R	
3		Wire, Teflon, Red	72722003	307-2	OLYMPIC	A/R	
4		Wire, Teflon, Orange	72722004	307-3	OLYMPIC	A/R	
5		Wire, Teflon, Yellow	72722005	307-4	OLYMPIC	A/R	
6		Wire, Teflon, Green	72722006	307-5	OLYMPIC	A/R	
7		Wire, Teflon, Blue	72722007	307-6	OLYMPIC	A/R	
8		Wire, Teflon, Violet	72722008	307-7	OLYMPIC	A/R	
9		Wire, Teflon, Gray	72722009	307-8	OLYMPIC	A/R	
10		Cable Tie, Miniature	56001003	L-4-18-9-C	T&B	A/R	

Cable Assembly, Panel BD/LGV BD (W16)

Figure 6-11

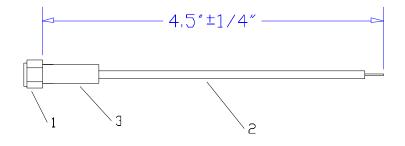

Cable Assembly, Panel BD/LGV BD (W16))	75 010 120, Rev D			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		CONNECTOR, 37 PIN	48000039		AMP	1	
2		CONNECTOR, 40 PIN	55050006		3M	1	
3		CABLE, FLAT 50 CONDUCTOR	75000019		3M	AR	
4		LABEL, LASER, RIBBON CABLE	73100002		PANDUIT	1	

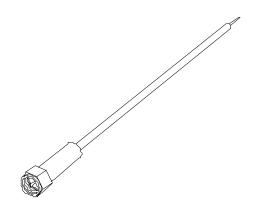


Cable Assembly, LCD Display/LGV BD (W1)

Figure 6-12

Cak	ole Assem	bly, LCD Display/LGV BD (W1)		75 010 130, Rev B					
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty			
1		Connector, 25 Pin	48000015	747303-2 OR EQUIV.	AMP	1			
2		Cable, 50 Conductor	75000019	3302/50	3M	A/R			
3		Connector, 26 Pin	48000016	622-2630	T&B	1			

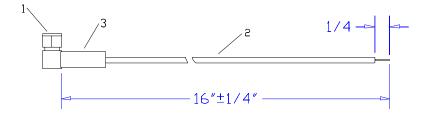


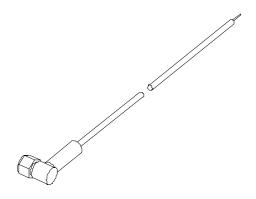


Cable Assembly, MBC BD/TX/RX (W25)

Figure 6-13

Cable Assembly, MBC BD/TX/RX (W25)				75 010 131	, Rev C	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		Connector, SMA Right	48040036	142-0403-101	EFJ	1
2		Cable, Coax	71110006	RG-316/U	RG-316/U	A/R
3		Shrink Tubing, Black	73000014	FIT-321-1/4	ALPHA	3/4"

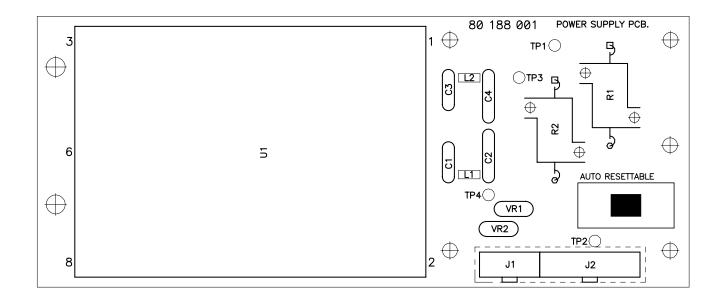




Cable Assembly, Rec/Tone (W7)

Figure 6-14

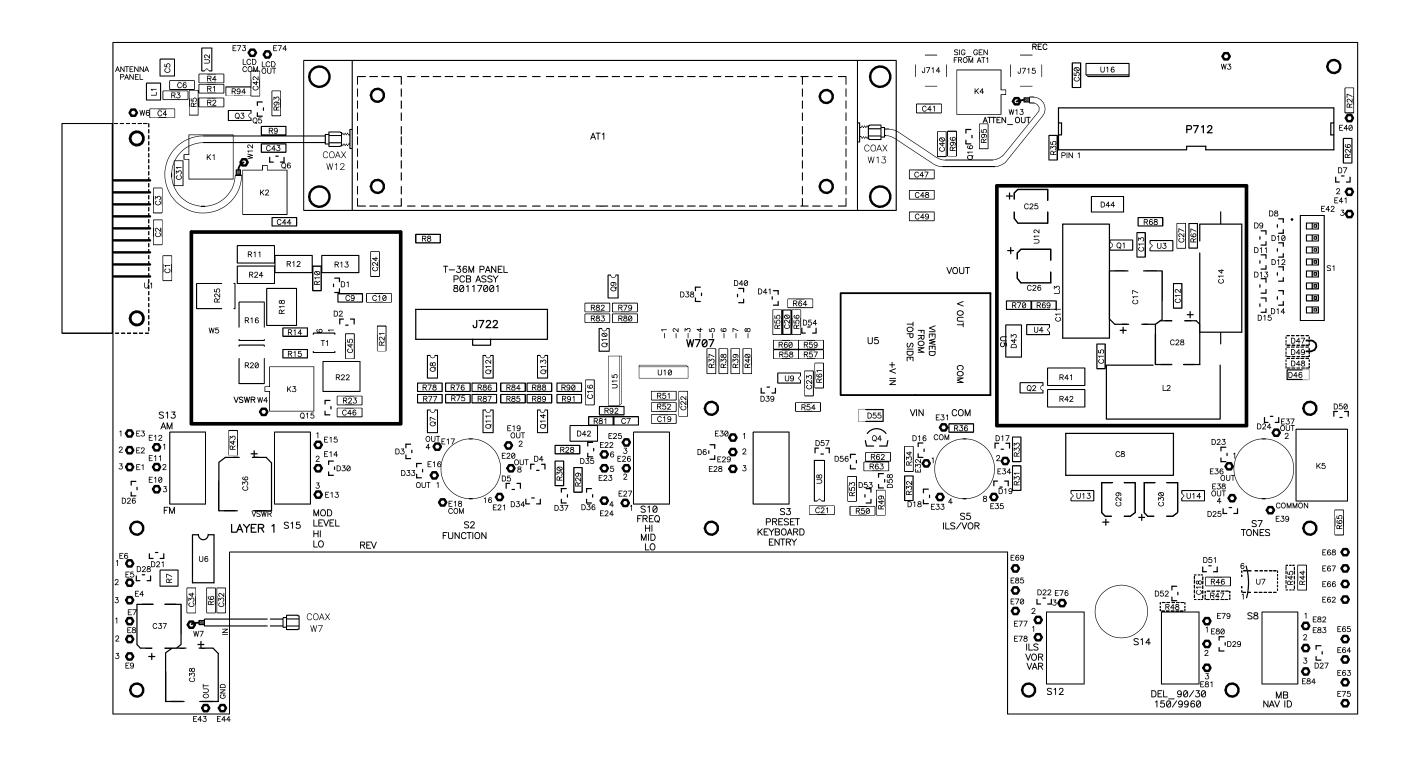
Cable Assembly, Rec/Tone (W7)				75 010 132, Rev C			
Item Ref. No. Desig. No. Desig. Vendor P/N Resource Qty							
1		Connector, SMA	4804002	26 142-0321-101	EFJ	1	
2		Cable, Coax	7111000	16 RG-316/U	RG-316/U	A/R	
3		Shrink Tubing, Black	7300001	I 4 FIT-321-1/4	ALPHA	3/4"	



Cable Assembly, LGV/TX/RX (W27)

Figure 6-15

Cable Assembly, LGV/TX/RX (W27)				75 010 167, Rev B			
Item No. Ref. Desig. Nomenclature Tel Desig. Vendor P/N Resource Qty							
1		Connector, SMA Right	48040	036	142-0403-101	EFJ	1
2		Cable, Coax	71110	006	RG-316/U	RG-316/U	A/R
3		Shrink Tubing, Black	73000	014	FIT-321-1/4	ALPHA	3/4"



PCB Assembly, Power Supply (A11)

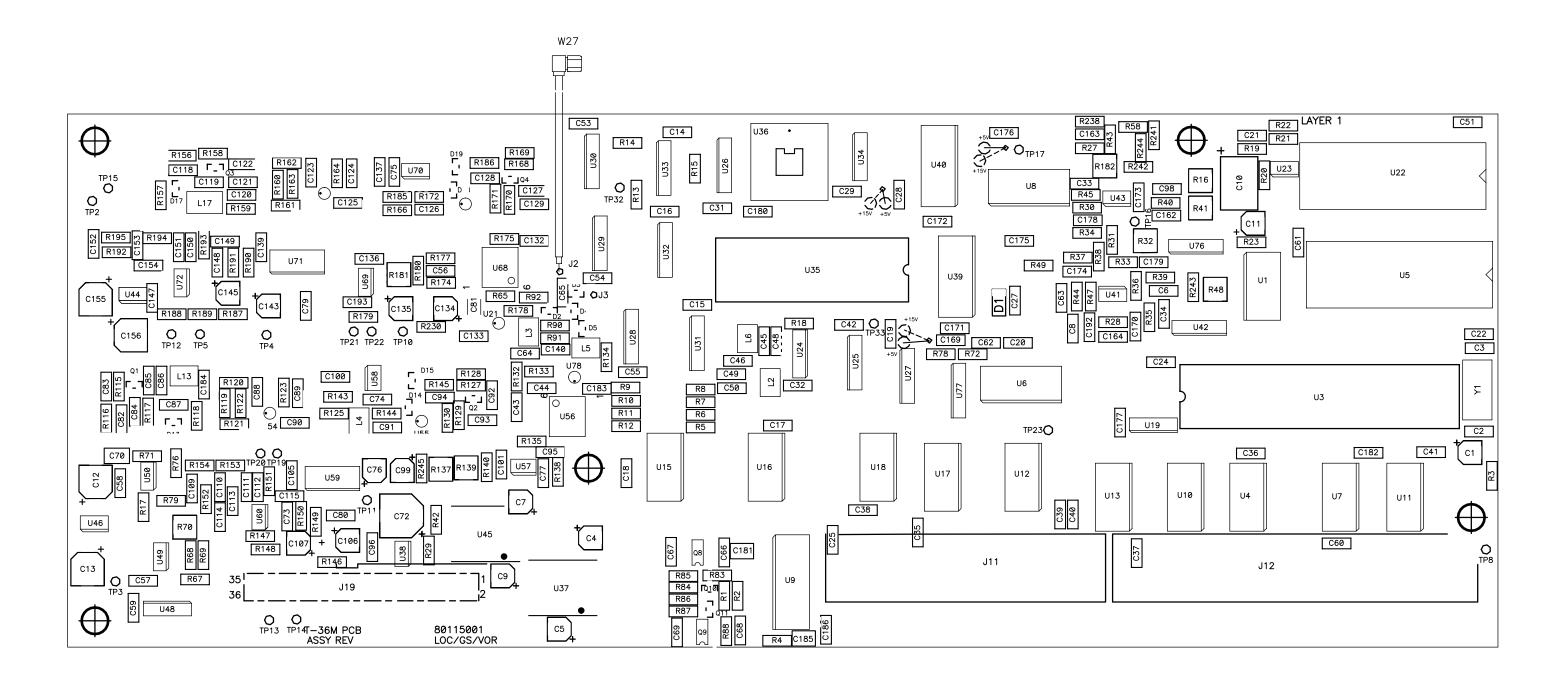
Figure 6-16

PCE	3 Assemb	ly, Power Supply (A11)	80 188 00°	1, Rev A	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		PCB DRILLING AND FABRICATION	80188002			1
2	VR1, VR2	VARISTOR (MOV)	42230002	V175LA2	HARRIS	2
3	C1, C3	CAPACITOR, CERAMIC, DISK .0047uF/1500V	42100003	125LSD47	SPRAGUE	2
4	C2, C4	CAPACITOR, CERAMIC, DISK .0022uF/2500V	42100004	440LD22	SPRAGUE	2
5	U1	CONVERTER, AC/DC	48092003	MSCA-0303	ASTRODYN E	1
6	J2	CONNECTOR, HEADER, 8POS, SINGLE ROW	55050011	103670-7	AMP	1
7	J1	CONNECTOR, HEADER, 4POS, SINGLE ROW	55050010	103670-3	AMP	1
8	TP1-TP4	TERMINAL	55025008	TP-105-01-09	COMP. CORP	4
9	L1, L2	CHIP, FERRITE	48065003	H11206N500R	STEWARD	2
10	R1	RESISTOR, POWER, 5W 1 Ohm	41400003	RH-5-1	DALE	1
11	R2	RESISTOR, POWER, 5W 2 Ohm	41400004	RH-5-2	DALE	1
12	F1	FUSE, STRAP, AUTO RESET	45100024	PFST-200	SCHURTER	1
13		TAPE, INSULATING	31006001	KPT-3/8	DUPONT	AR
14		EYELETS, BRASS FLANGE	51010002	GS3-6	STIMPSON	4
15		TINNED COPPER BUS WIRE	72001000	755	OLYMPIC	AR

PCB Assembly, Panel (A7)

Figure 6-17

PC	B Assemb	oly, Panel (A7) (1 of 3)) 80 193 001, Rev A				
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1		Panel PCB, Drilling and Fabrication (Rev F)	80117002			1	
2	U1	Amplifier, RF, Wideband Linear	48084007	CA4812C	MOTOROLA	1	
3	U2	Low Power Low Offset Voltage Dual Comp., SM, SO-8	40201045	LM393D	NAT'L SEMICON.	1	
4	U3	Step-Up Switching Regulator, SM, SO-8	40201125	MAX643AESA	MAXIM	1	
5	U4	Step-Down DC-DC Controller, SM, SO-8	40201124	MAX649ESA	MAXIM	1	
6	U5	Inverter (5V)	48072001	46013-01	IEE	1	
7	U6	Audio Amplifier, DIP-8	40200067	LM386N-4	NAT'L SEMICON.	1	
8	U8	Tripple 3-Input Buffered NOR Gate, SM, SO-14	40201015	CD4025BCM	NAT'L SEMICON.	1	
9	U9	Voltage Comparator, SM, SO-8	40201099	LM311D	NAT'L SEMICON.	1	
10	U10	14-Stage Ripple-Carry Binary Counter/Divider, SM, SO-8	40201020	CD4060BCM	NAT'L SEMICON.	1	
11	U12, U13, U14	Switched-Capacitor Voltage Converter, SM, SO-8	40201012	ICL7660ESA	MAXIM	3	
12	U15	Dual Retriggerable Monostable Multivibrator, SM, SO-16	40201074	74HC123AM	N.S.	1	
13	U16	Quad 2-Input NOR Gate, SM, SO-14	40201034	74HC02D	NAT'L SEMICON.	1	
14	K1-K4	Relay, DPDT	46002004	172D-12	TELEDYNE	4	
15	K5	Relay, SM	46005002	EE2-12	NEC	1	
16	AT1	Relay Programmable Attenuator, 0-127dB	44002002	50P-076	JFW INDUSTRIES	1	
17	T1	Transformer, RF, SM	43002003	TC1-1	MINI- CIRCUITS	1	
18	D55	Diode, Zener, 10V	40010006	1N961B	MOTOROLA	1	
19	D46	Diode, Rectifier	40010012	1N4003	1N4003	1	
20	D3-D19, D21-D30, D33-D1 D50,D52,D5 3, D56, D57	Diode, General Purpose Signal, SM, SOT-23	40010014	MMBD914	MOTOROLA	41	
21	D1, D2	Diode, Schottky, SM, SOT-23	40010016	ZC2800	ZETEX	2	
22	D51,D54, D58	Diode, Zener, SM	40010025	PMBZ5240B	PHILLIPS	3	
23	D43, D44	Diode, Schottky, Rectifier, SM	40010034	1N5817MCT-ND	DIGI-KEY	2	
24	D42	Diode,SM	40010038	S1ABDICT-ND	DIGI-KEY	1	
25	Q4	Transistor, N-Cannel, MOSFET	40001012	VN10LM	MOTOROLA	1	
26	Q2, Q3	Transistor, Single, Logic Level, P-Chan., MOSFET, SM , SO-8	40001025	IRF7205-ND	DIGI-KEY	2	
27	Q1	Transistor, Single, Logic Level, N-Chan., MOSFET, SM , SO-8	40001026	IRF7201-ND	DIGI-KEY	1	
28	Q7, Q10, Q11, Q14	Transistor, Dual, Logic Level, N-Chan., MOSFET, SM , SO-8	40001027	IRF7101-ND	DIGI-KEY	4	
29	Q8, Q9, Q12, Q13	Transistor, Dual, SM, SM-8	40001028	ZDT749CT-ND	DIGI-KEY	4	
30	Q5, Q6, Q15, Q16	Transistor N-P-N, SM, SOT-23	40001011	MMBT2222A	MOTOROLA	4	
31	L1	Inductor, SM, 32CS, 1uHy	43011041	380LB-1R0K	TOKO	1	
32	L3	Inductor, Choke, 100uHy	43011045	5900-101	MILLER	1	
33	L2	Inductor, Choke, 150uHy	43011046	5900-151	MILLER	1	
34	C31	Cap, Chip, CC1206, NPO, 4.7pF	42025042			1	



PC	B Assemb	oly, Panel (A7) (2 of 3)	80 193 001			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
35	C13, C27, C12	Cap, Chip, CC1206, NPO, 100pF	42025025			3
36	C1, C4, C7, C9, C10, C6	Cap, Chip, CC1206, NPO, 1000pF	42025037			6
37	C2,C3,C21, C22- C24,C34,C4 0-46	Cap, Chip, CC1206, X7R, 0.01uF	42020001			14
38	C32	Cap, Chip, CC1206, X7R, 0.056uF	42020016			1
39	C11,C15,C1 6,C47-C50	Cap, Chip, CC1206, X7R, 0.1uF	42020013			7
40	C19, C20	Cap, Chip, CC1206, NPO, 0.22uF	42025044			2
41	C5	Cap, Chip, CC1210, 1uF	42026001			1
42	C8, C14	Cap. Alum. Axial, 220uF/25V	42180004	2222-118-36221	PHILLIPS	2
43	C25, C26, C29, C30	Cap, SM, Elect., 22uF/25V	42185036	ECE-V1EA220P	PANASONIC	4
44	C28, C37	Cap, SM, Elect., 100uF/25V	42186001	ECE-V1EA101P	PANASONIC	2
45	C36, C38	Cap, SM, Elect., 220uF/25V	42186002	ECE-V1EA221P	PANASONIC	2
46	C17	Cap, SM, Elect., 330uF/25V	42186005	ECE- V1EA331UP	PANASONIC	1
47	R57, R58, R60	Res, Chip RC1206 MF 1% 4.99K	41101260			3
48	R59	Res, Chip RC1206 MF 1% 5.62K	41101265			1
49	R51, R52	Res, Chip RC1206 MF 1% 232K	41101420			2
50	R6	Res, Chip RC1206 5% 10 OHM	41160052			1
51	R61	Res, Chip RC1206 5% 68 OHM	41160016			1
52	R10, R14, R15, R43	Res, Chip RC1206 5% 100 OHM	41160006			4
53	R44	Res, Chip RC1206 5% 150 OHM	41160009			1
54	R35	Res, Chip RC1206 5% 330 OHM	41160023			1
55	R2,R26,R36 -R40,R50, R53,R55,R6 3,R65,R92	Res, Chip RC1206 5% 1K	41160003			13
56	R80	Res, Chip RC1206 5% 2.2K	41160008			1
57	R1,R3,R8,R 21,R46,R94, R95	Res, Chip RC1206 5% 4.7K	41160013			7
58	R4,R5,R9,R 23,R27- R34,R49,R5 4,R56,R79, R93,R96	Res, Chip RC1206 5% 10K	41160015			18
59	R75,R77,R8 3,R85,R87, R89, R91	Res, Chip RC1206 5% 27K	41160024			7
60	R76,R78,R8 2,R84,R86, R88,R90	Res, Chip RC1206 5% 47K	41160031			7
61	R70	Res, Chip RC1206 5% 75K	41160101			1
62	R68	Res, Chip RC1206 5% 82K	41160102			1
63	R62	Res, Chip RC1206 5% 100K	41160025			1
64	R69	Res, Chip RC1206 5% 240K	41160035	1	1	1 1

PC	B Assemb	oly, Panel (A7) (3 of 3)	80 193 001			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
65	R81	Res, Chip RC1206 5%, 470K	41160036	3314G-1-103E	BOURNS	1
66	R64, R67	Res, Chip RC1206 5% 1M	41160049	RW1S0BAR50 0J	OHMITE	2
67	R7	Trimpot, SM, 10K	41050010	P24XCT-ND	DIGI-KEY	1
68	R41, R42	Res, Chip, 1W, 5% 0.5 OHM	41802002	P43XCT-ND	DIGI-KEY	2
69	R12	Res, Chip, SM, RC2512 5% 24 OHM	41130011	P51XCT-ND	DIGI-KEY	1
70	R11, R24	Res, Chip, SM, RC2512 5% 43 OHM	41130010	RFP-250250- 4Y50-2	H. P. / RFP	2
71	R13	Res, Chip, SM, RC2512 5% 51 OHM	41130012	3314G-1-103E	BOURNS	1
72	R18, R22	Res, Chip, SM, 8W, 2% 50 OHM	41130013	RW1S0BAR50 0J	OHMITE	2
73	R16, R20, R25	Res, High Power,10W, 5% 100 OHM	41130014	RFP-10-100RV	H. P. / RFP	3
74	J714, J715	Connector, SMA, Straight, Female	48040035	142-0701-201	E.F. JOHNSON	2
75	J722	Connector, 8-Pin Header, Single Row	48000082	103638-7	AMP	1
76		Cover, Shield Isolation, RF	62040053			1
77		Cover, Shield Isolation, RF	62040054			1
78		Shield Isolation, RF	31020100			1
79		Shield Isolation, RF	31020101			1
80	S1	Switch, 8 Position, SM	46024002	90HBW08S	GRAYHILL	1
81	W7	Cable Assy, Rec/Tone	75010132			1
82	W12,W13	Cable Assy, Relay to Attenuator	75010113			2
83	W707	Cable Assy, Panel Bd/Keypad/FP	75010118			1
84	W17	Cable Assy, Attenuator Control	75010119			1
85	W16	Cable Assy, Panel Bd/Loc/Gs/Vor	75010120			1

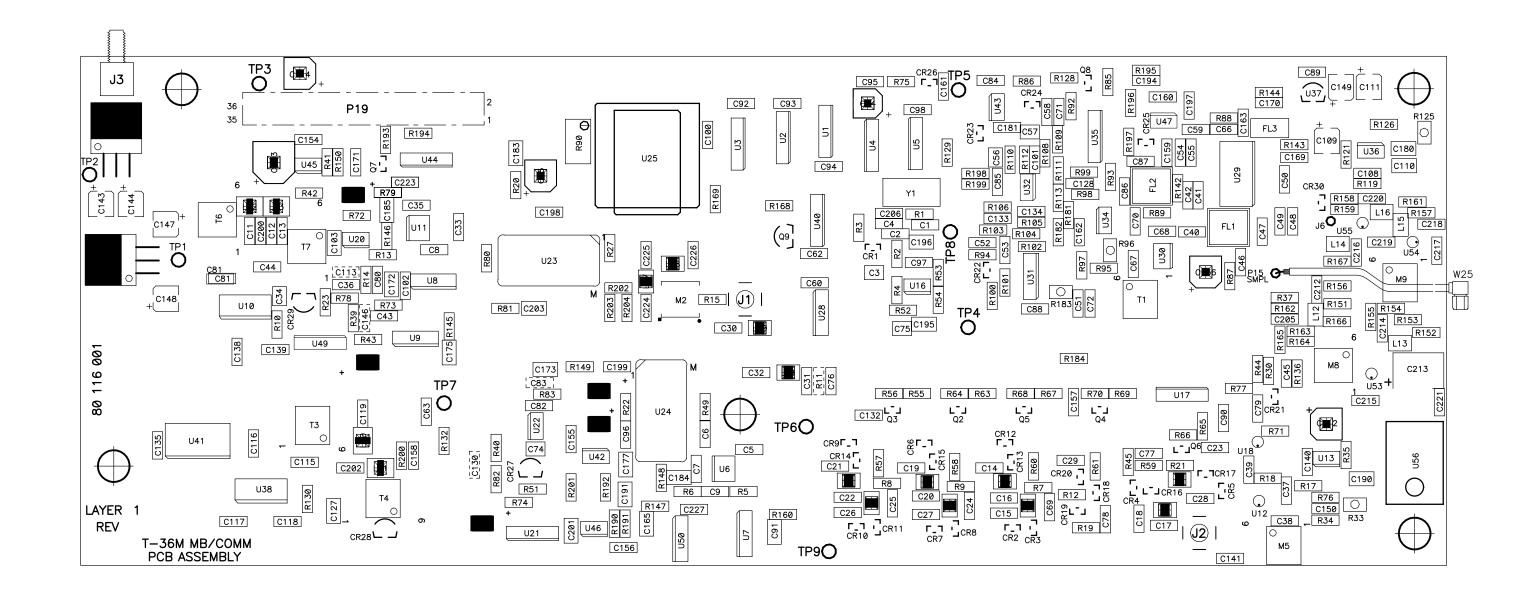
PCB Assembly, LGV Board (A5)

Figure 6-18

P	CB Assem	bly, LGV Board (A5) (1 of 5)		80 115 001, Rev G			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
1	A1M	PCB Drilling and Fabrication (Rev A)	80115002			1	
2	U3	MiDo-Processor, DIP-40	40200027	80C31BH	Intel	1	
3							
4	U22	Memory I.C.	40200103	BQ4010YMA- 85C	Benchmarq	1	
5	U36	Programmable Logic, SM,	40201100	16V8Z-25JI	Palce	1	
6	1157 1150						
7	U57, U58, U60, U69, U70, U72	Low Power Operational Amp., SM, SO-8	40201075	TLC271IP	T. I.	6	
8	U49	Low Power Low Offset Voltage Dual Comp., SM, SO-8	40201045	LM393D	Nat'l Semi.	1	
9	U23, U41, U43, U50	Low Power Dual Operational Amp., SM, SO-8	40201051	LM358M	Nat'l Semi.	4	
10	U9	8-channel 8-bit A/D Converter, SM, SO-28	40201092	MAX158AEW1	Maxim	1	
11	U8, U39, U40	Quad 8-bit D/A Converter, SM, SO-24	40201091	MAX505AEWG /BEWG	Maxim	3	
12	U25-U30	Synchronous Binary Counter, SM, SO-16	40201002	74HC163D	Nat'l Semi.	6	
13	U34	Quad 2-Input NOR Gate, SM, SO-14	40201034	74HC02D	Nat'l Semi.	1	
14	U31-U33	4-Bit Binary Adder With Fast Carry, SM, SO-16	40201095	74HC283D	Nat'l Semi.	3	
15	U48	Quad 2-Input NAND Gate, SM, SO-14	40201038	74HC00M	Nat'l Semi.	1	
16	U1, U4, U17, U18	Octal D-Type Latch, SM, SO- 20	40201014	74HC573WM	Nat'l Semi.	4	
17	U7, U10- U13, U15, U16	Octal D-Type Edge-Triggered Flip Flop, SM, SO-20	40201013	74HC574WM	Nat'l Semi.	7	
18	U19, U24	Hex Inverter, SM, SO-14	40201019	74HC04D	Nat'l Semi.	2	
19	U42, U76, U77	Triple 2-Channel Analog Multiplexer, SM, SO-16	40201080	74HC4053BCM	Nat'l Semi.	3	
20	U6	4-to-16 Line Decoder with Latch, SM, SO-24	40201018	74HC4514WM	Nat'l Semi.	1	
21	U56, U68	Frequency Mixer, 600MHz, SM	40201001	ASK1KK81	Mini-Circuits	2	
22	U54, U55, U66, U67	RF Amp. 20dB@500MHz, SM, 86 Plastic	40201098	MAR-1SM	Mini-Circuits	4	
23	U21, U78	RF Amp. 12dB@500MHz, SM, 86 Plastic	40201087	MAR-3SM	Mini-Circuits	2	
24	U59, U71	Prescaler/Serial Input PLL Freq. Synthesizer, SM, SO-16	40201057	MB1502PF	Fujitsu	2	
25	U38	Voltage Regulator, +5V, SM	56060012	LM2931CM	Nat'l Semi.	1	
26	U45	Voltage Regulator, +15V, SM	56060010	LM2940CS-15	Nat'l Semi.	1	
27	U37	Voltage Regulator, -5V, SM	56060013	LM2990S-5.0	Nat'l Semi.	1	
28	U44, U46	Voltage Regulator, SM , SO-8	56060009	TL751L12CD	T. I.	2	
30	XU5, XU35	Connector, Socket, 28 Pin	48064001	ICN-286-S5-T	Rob Nugent	2	
31	J19	Connector, Socket 36 Pin	48000055	SSW-118-01- G-D	Samtec	1	
32	J11	Connector, Rt. Angle, 25 Pin	48000023	56-722-010	Spectrum	1	
		,		0.0	1 -1		

P	CB Assem	bly, LGV Board (A5) (2 of 5)		80 115 001, Rev G			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
33	J12	Connector, Rt. Angle, 37 Pin	48000033	FCC17-C37PC- 44B	Amphenol	1	
34	Y1	Crystal, 12 MHz, HC-18/U	40040016		Bomar	1	
35	XY1	Crystal, Mount	55080002	470. 025	Bivar	1	
36 37		Diode, Silicon PIN Switching,	40010010	MMBV3700LT1	Motorola	2	
38	D2, D3	SM, SOT-23 Diode, General Purpose	40010014	MMBD914	Motorola	2	
39	D4, D5 D14, D15, D18, D19	Signal, SM, SOT-23 Diode, Schottky, SM, SOT-23	40010016	ZC2800	Z-Tech	4	
40	D13, D17	Diode, Tuning, SM, SOT-23	40010017	MMBV109L	Motorola	2	
41	D13, D17	Diode, Zener, 5.1V	40010030	1N5231B	Motorola	1	
42	21		1001000				
43	Q8, Q9	Transistor N-Cannel, MOSFET, SM , SO-8	40001025	IRF7205	Int'l Rectifier	2	
44	Q10, Q11	Transistor N-P-N, SM, SOT-23	40001011	MMBT2222A	Motorola	2	
45	Q1, Q3	Transistor N-P-N Silicon High Frequency, SM, SOT-23	40001013	NE02133	NEC	2	
46	Q2, Q4	Transistor P-N-P, SM, SOT-23	40001014	MMBT2907A	Motorola	2	
47	TP2-TP5, TP8, TP10, TP11, TP12-TP17, TP19-TP23, TP32, TP33	Terminal	55025008	TP-105-01-09	vcc	20	
48	L17	Coil, Wound, 24 AWG 5.5T, .188 I.D. CW	43025018			1	
49	L3	Coil, Wound, 24 AWG 6.5T, .188 I.D. CW	43025031			1	
50	L13	Coil, Wound, 22 AWG 2T, .125 I.D. CCW	43025038			1	
51	L2, L6	Inductor-SM 4.7uhy	43011031	300LS-4R7K	Toko	2	
52	L4, L5	Coil, Wound, 24 AWG 4.5T, .125 I.D. CW	43025034			2	
53 54	C4, C5 ,C7, C9, C107, C145	Cap-SM, Elect, 1uF/50V	42185045	ECE- V1HA010R	Panasonic	6	
55	C10	Cap, Tant, 10uF/10V	42470023	ECS- F1AE106K	Panasonic	1	
56	C1, C11, C76, C99, C106, C134, C135, C143	Cap, SM, Elect, 10uF/6V	42185030	ECE- V1CA100R	Panasonic	8	
57	C12, C13, C155, C156	Cap, SM, Elect, 22uF/25V	42185036	ECE- V1EA220P	Panasonic	4	
58	C72	Cap, SM, Elect, 100uF/16V	42186003	ECE- V1CA101P	Panasonic	1	
59	C81	Cap, Cerm, 100pF	42000019			1	
60	C86	Cap, Chip, CC1206, NPO, 15pF	42025015			1	
61	C85	Cap, Chip, CC1206, NPO, 4.7pF	42025042			1	
62	C43	Cap, Chip, CC1206, NPO, 10pF	42025013			1	

P	CB Assem	bly, LGV Board (A5) (3 of 5)		80 115 001, Rev G			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
63	C2, C3	Cap, Chip, CC1206, NPO, 33pF	42025019			2	
64	C46, C84, C119, C120, C133, C182	Cap, Chip, CC1206, NPO, 47pF	42025021			6	
65	C64, C65, C87, C105, C121, C123, C125, C126, C127, C139, C184	Cap, Chip, CC1206, NPO, 100pF	42025025			11	
66	C193	Cap, Chip, CC1206, NPO, 220pF	42025029			1	
67	C45	Cap, Chip, CC1206, NPO, 330pF	42025031			1	
68	C49	Cap, Chip, CC1206, NPO, 680pF	42025035			1	
69	C6, C8, C21, C39, C44, C48, C50, C51, C56-C61, C73, C77, C82, C83, C88-C95, C98, C109- C113, C118, C122, C124, C128, C129, C132, C140, C148, C150-C154, C163, C164, C178, C179, C183, C186	Cap, Chip, CC1206, NPO, 1000pF	42025037			51	
70	C14-C20, C22-C29, C31-C38, C40-C42, C53-C55, C62, C63, C66-C69, C74, C75, C79, C80, C100, C101, C114, C136, C137, C147, C162, C169-C177, C180	Cap, Chip, CC1206, X7R, 0.01uF	42020001			56	
71	C149	Cap, Chip, CC1206, X7R, 0.022uF	42020021			1	
72	C96, C115, C192, C194	Cap, Chip, CC1206, X7R, 0.1uF	42020013			4	
73	C70, C181, C185	Cap, Chip, CC1210, 1uF	42026001			3	
74							



P	CB Assem	bly, LGV Board (A5) (4 of 5)		80 115 00	1, Rev G	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
75	R32, R41, R70	Trimpot, SM, 1K	41050007	3314G-1-102E	Bourns	3
76	R16, R139	Trimpot, SM, 10K	41050010	3314G-1-103E	Bourns	2
77	R48	Trimpot, SM, 20K	41050011	3314G-1-203E	Bourns	1
78	R137, R182	Trimpot, SM, 50K	41050012	3314G-1-503E	Bourns	2
79	R181	Trimpot, SM, 100K	41050013	3314G-1-104E	Bourns	1
80						
81 82	R151, R153, R193, R194	Res, Chip, RC1206, MF, 1% 6.34K	41101270			4
83	R35-R38	Res, Chip, RC1206, MF, 1% 10.0K	41101289			4
84		170				
85	R150	Res, Chip, RC1206, MF, 1%, 34K	41101340			1
86						
87	R58, R125	Res, Chip, RC1206, 5% 0 OHM	41160145			2
88	R119, R121, R160, R161	Res, Chip, RC1206, 5% 33 OHM	41160007			4
89	R122, R133, R163	Res, Chip, RC1206, 5% 62 OHM	41160063			3
90	R174	Res, Chip, RC1206, 5% 68 OHM	41160016			1
91	R166, R178	Res, Chip, RC1206, 5% 100 OHM	41160011			2
92	R129, R170	Res, Chip, RC1206, 5% 150 OHM	41160009			2
93	R130, R171	Res, Chip, RC1206, 5% 220 OHM	41160020			2
94	R65, R120, R162	Res, Chip, RC1206, 5% 240 OHM	41160045			3
95	R123, R134, R164	Res, Chip, RC1206, 5% 390 OHM	41160070			3
96	R146, R187	Res, Chip, RC1206, 5% 470 OHM	41160021			2
97	R117, R135, R159, R175	Res, Chip, RC1206, 5% 680 OHM	41160027			4
98	R72	Res, Chip, RC1206, 5% 910 OHM	41160039			1
99	R20	Res, Chip, RC1206, 5% 6.2K	41160084			1
100	R49, R90- R92, R230	Res, Chip, RC1206, 5% 1K	41160003			5
101	R69, R116, R156	Res, Chip, RC1206, 5% 2.7K	41160004			3
102	R28, R127, R152, R168, R192	Res, Chip, RC1206, 5% 3.3K	41160029			5
103	R241, R47, R67	Res, Chip, RC1206, 5% 4.7K	41160013			3
104	R128, R149, R169	Res, Chip, RC1206, 5% 8.2K	41160087			3

P	CB Assem	bly, LGV Board (A5) (5 of 5)	80 115 001, Rev G			
Item	Ref.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
No.	Desig.	Homendature	Ter besig.	VCHOOL 1714	resource	Qty
105	R3, R5-R15, R17, R23, R27, R30, R31, R33, R34, R39, R40, R71, R78, R79, R118, R144, R154, R157, R172, R177, R191, R195, R238	Res, Chip, RC1206, 5% 10K	41160015			33
106	R115, R132, R140, R158	Res, Chip, RC1206, 5% 12K	41160089			4
107	R76, R244	Res, Chip, RC1206, 5% 20K	41160092			2
108	R45	Res, Chip, RC1206, 5% 22K	41160047			1
109	R19, R29	Res, Chip, RC1206, 5% 27K	41160024			2
110	R243	Res, Chip, RC1206, 5% 36K	41160095			1
111	R245	Res, Chip, RC1206, 5% 39K	41160096			1
112	R2, R21, R22, R43, R44, R138, R179, R190	Res, Chip, RC1206, 5% 47K	41160031			8
113	R242	Res, Chip, RC1206, 5% 75K	41160101			1
114	R42	Res, Chip, RC1206, 5% 91K	41160103			1
115	R18, R68, R83-R88, R147, R148, R180, R188, R189	Res, Chip, RC1206, 5% 100K	41160025			13
116	R143, R145, R185, R186	Res, Chip, RC1206, 5% 470K	41160036			4
117	R4	Res, Chip, RC1206, 5% 1M	41160049			1
118	W27	Cable Assy, LGV / Tx/Rx	75010167			1
119		Shield, Isolation	31020074			2
120		Cover, RF Shielding	62040030			2
121		Wire, Kynar, Insulated, 28 AWG	72628001	461-0	Olympic	AR
122		Adhesive, Wire Tacking (Spot Cement)	31010005	TACPAC444	Loctite	AR

PCB Assembly, MB/COMM (A6)

Figure 6-19

PCB Assembly, MB/COMM (A6) (1 of 6)				80 116 00	1, Rev J	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
1		Panel PCB Drilling and Fabrication	80116002			1
2						
3	U1, U2, U3	Dual 4-Bit Decade Counter, SM, SO-16	40201030	74HC390M	N.S.	3
4	U4, U21, U49	CMOS Phase Lock Loop, SM, SO-16	40201042	74HC4046D	Motorola	3
5	U5	14-Stage Ripple-Carry Binary Counter/Divider, SM, SO-8	40201020	CD4060BCM	N.S.	1
6	U7, U8	Hex Inverter, SM, SO-14	40201019	74HC04M	N.S.	2
7	U9, U50	Dual D Flip-Flop, SM, SO-14	40201021	74HC74AM	N.S.	2
8	U17	8-Channel Analog Multiplexer, SM, SO-16	40201101	74HC4051D	N.S.	1
9	U28	Quad 2-Input NAND Gate, SM, SO-14	40201038	74HC00M	N.S.	1
10	U40	Binary Counter with Synchronous Clear, SM, SO- 16	40201002	74HC163D	N.S.	1
11 12	U41	Octal D Flip-Flop, Edge- Triggered, SM, SO-20	40201013	74HC574WM	N.S.	1
13	U35, U44	Triple 2-Channel Analog Multiplexer, SM, SO-16	40201049	CD4053BCM	N.S.	2
14	U13, U16, U32, U34	Low Power Dual Operational Amp., SM, SO-8	40201051	LM358D	N.S.	4
15	U31	High Speed Dual Comparator, SM, SO-14	40201044	LM319M	N.S.	1
16	U20, U22	Low-Noise JFET-Input Operational Amp., SM, SO-8	40201158	TL071C	T.I.	2
17	U46, U47	JFET-Input Operational Amp., SM, SO-8	40201007	TL081CD	T.I.	2
18	U43, U36	JFET-Input Dual Operational Amp., SM, SO-8	40201008	TL082CD	T.I.	2
19	U10, U38	Direct Digital Synthesizer, 125MHz, SM, SSOL-28	40201121	AD9850BRS	Analog Devices	2
20	U29	Low Power Mixer FM IF System, SM, SOL-20	40201118	SA615D	Philips	1
21	U6, U11	Two Modulus Prescaler, 1.1GHz, SM, SO-8	40201003	MB501FLP	Fujitsu	2
22	U30	IF Amplifier, SM, SO-8	40201052	MC1350D	Motorola	1
23	U12	RF Amp. 16dB@500MHz, SM, 86 Plastic	40201098	MAR-1SM	Mini-Circuits	1
24	U54	RF Amp. 22dB@500MHz, SM, 86 Plastic	40201156	ERA-3SM	Mini-Circuits	1
25	U18, U53, U55	RF Amp. 12dB@500MHz, SM, 86 Plastic	40201128	MSA 0786	HP	3
26	M2	Frequency Mixer, (0.35-2)GHz, SM	40201086	RMS-11F	Mini-Circuits	1
27	M5, M8, M9	Frequency Mixer, (1-600)MHz, SM	40201001	ASK-1-KK81	Mini-Circuits	3
28	U23	Voltage Controlled Oscillator, (485-765)MHz	40201119	POS-765	Mini-Circuits	1
29	U24	Voltage Controlled Oscillator, (685-1025)MHz	40201120	POS-1025	Mini-Circuits	1

P	CB Assem	nbly, MB/COMM (A6) (2 of 6)		80 116 00	1, Rev J	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
30	U56	Voltage Regulator, +5V, TO- 220	56060006	LM2940T-5.0	N.S.	1
31	U45	Voltage Regulator, +5V, SM, TO-220	56060012	LM2931CM	N.S.	1
32	U37	Voltage Regulator, +6V, SM, SO-8	56060014	LM78L62ACZ	N.S.	1
33	U14	Voltage Regulator, +15V, SM, TO-220	56060010	LM2940CS-15	N.S.	1
34	U15	Voltage Regulator, -5V, SM, TO-220	56060013	LM2990S-5.0	N.S.	1
35	U42	Voltage Regulator, +12V, SM, SO-8	56060009	TL751L12CD	T.I.	1
36						
37	Q2-Q6	Transistor P-N-P, SM, SOT-23	40001014	MMBT2907A	Motorola	5
38	Q7, Q8	Transistor N-P-N, SM, SOT-23	40001011	MMBT2222A	Motorola	2
39	Q9	Transistor, N-Channel, MOSFET	40001012	VN10LM	Motorola	1
40	CR2-CR20	Diode, Silicon PIN Switching, SM, SOT-23	40010010	MMBV3700L	Motorola	19
42	CR22, CR30	Diode, General Purpose Signal, SM, SOT-23	40010014	MMBD914	Motorola	2
43	CR27-CR29	Diode, Reference 2.5V	40200040	LM336BZ2.5	N.S.	3
44	CR21, CR23-CR25	Diode, Schottky, SM, SOT-23	40010016	ZC2800	Z-TECH	4
45	CR1	Diode, Voltage-Variable Capacitance, SM, SOT-23	40010017	MMBV109L	Motorola	1
46	CR26	Diode, Zener, 5.1V, SM, SOT- 23	40010039	MMBZ5231BLT1	Motorola	1
47						
48	FL1, FL2	Filter, Ceramic 455KHz	43020007	CFU455B2	MURATA	2
49	FL3	Resonator, Ceramic 455KHz	40040032	CDB455C9	MURATA	1
50	Y1	Crystal, 20.97215MHz	40040030	BOMAR	BOMAR	1
51	XY1	Crystal, Mount	55080002	470-025	BIVAR	1
52	U25	Oscillator, 10Mhz	48075007	7X2100A-FZ-1- 10,000Mhz	RALTRON	1
53	P19	Header, Shrouded, Top 36 Pin	48000064	TSS-118-01-G-D	SAMTEC	1
54	T1, T3, T4, T6, T7	Transformer, RF	43002002	T1-1T-KK81	Mimi-Circuit	5
55	TP1-TP10	Terminal	55025008	TP-105-01-09	Vendor Comp.	10
56	U25 (Alternate to item 52)	Temperature Compensated Oscillator, 10MHz	48075009	CFPT-5206FA- 10.000MHz	CFPT	1
57	L17, L18	Inductor, SM, 32CS 12nH	43011070	380NB-12NM	TOKO	2
58	L20, L21	Inductor, SM, 32CS 18nH	43011032	380NB-18NM	TOKO	2
59	L3, L4	Inductor, SM, 1210 22nH	43011040	CTM1210-R022K	CTL. TECH.	2
60	L1, L2	Inductor, SM, 32CS 33nH	43011033	380NB-33NM	TOKO	2
61	L5, L6, L12, L14	Inductor, SM, 32CS 100nH	43011071	380NB-R10M	токо	4
62	L7, L8	Inductor, SM, 32CS 180nH	43011036	380NB-R18M	TOKO	2
63	L13, L15, L16	Inductor, SM, 32CS 1.0uH	43011041	380LB-1R0K	токо	3
64	L22, L23	Inductor, SM, 43FS 10uH	43011020	300LS-100K	TOKO	2
65	L10, L11	Inductor, SM, 43FS 22uH	43011030	300LS-220K	TOKO	2

PCB Assembly, MB/COMM (A6) (3 of 6)				80 116 001, Rev J			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty	
67							
68	C206	Cap, Chip, CC1206, NPO 2.2pF	42025005			1	
69	C14, C15	Cap, Chip, CC1206, NPO 3.3pF	42025007			2	
70	C224, C226	Cap, Chip, CC1206, NPO 4.7pF	42025042			2	
71	C225	Cap, Chip, CC1206, NPO 6.8pF	42025011			1	
72	C30, C31	Cap, Chip, CC1206, NPO 10pF	42025013			2	
73	C4	Cap, Chip, CC1206, NPO 15pF	42025015			1	
74	C32	Cap, Chip, CC1206, NPO 18pF	42025016			1	
75	C16, C28	Cap, Chip, CC1206, NPO 22pF	42025017			2	
76	C1	Cap, Chip, CC1206, NPO 27pF	42025018			1	
77	C18, C19, C27	Cap, Chip, CC1206, X7R 39pF	42020009			3	
78	C17, C21, C26	Cap, Chip, CC1206, NPO 68pF	42025023			3	
79	C20	Cap, Chip, CC1206, NPO 82pF	42025024			1	
80	C47- C49,C66,C1 33,C134,C1 63, C212,C216	Cap, Chip, CC1206, NPO 100pF	42025025			9	
81	C22, C169	Cap, Chip, CC1206, X7R 150pF	42020010			2	
82							
83	C2	Cap, Chip, CC1206, NPO 330pF	42025031			1	
84	C108	Cap, Chip, CC1206, NPO 470pF	42025033			1	
85	C119, C158	Cap, Chip, CC1206, NPO 680pF	42025035			2	
86	C5-C9, C23- C25, C29, C33, C35, C37-C39, C43, C45, C46, C58, C60, C62, C63, C69, C76-C79, C84-C88, C90, C92- C98, C101, C102, C135, C140, C141, C150, C155, C156, C159, C160, C161, C171, C181, C194, C198, C199, C223, C227	Cap, Chip, CC1206, NPO 1000pF	42025037			67	

PCB Assembly, MB/COMM (A6) (4 of 6)				80 116 001	I, Rev J	
				T	T	
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
87	C72, C170, C202	Cap, Chip, CC1206, NPO 1200pF	42025038			3
88	C11, C12, C13, C200	Cap, Chip, CC1206, NPO 2200pF	42020015			4
89	C40, C44, C52, C53, C59, C80, C81, C115- C118, C128, C132, C138, C139, C157, C162, C205, C214, C215, C217-C221	Cap, Chip, CC1206, X7R 0.01uF	42020001			25
90	C36,C41,C4 2,C50,C51, C54- C57,C67,C6 8,C70,C89, C100,C154, C197	Cap, Chip, CC1206, X7R 0.1uF	42020013			16
91	C71, C82	Cap, Chip, CC1206, X7R, 0.22uF	42020065			2
92	C3,C34,C56 ,C57,C74,C 75,C91,C10 3,C110,C12 7,C165,C17 2,C173, C175,C177, C180,C183- C185,C190, C191,C195, C196, C201,C203	Cap, Chip, CC1210, 1uF	42026001			25
93						
94	C109, C143, C144, C147-C149	Cap, SM, Elect. 1uF/50V	42185045	ECE-V1HA010R	PAN	6
95	C111	Cap, SM, Elect. 10uF/16V	42185030	ECE-V1CA100R	PAN	1
96	C112, C136, C65, C114	Cap, SM, Elect. 22uF/25V	42185036	ECE-V1EA220P	PAN	4
97	C10, C73, C99, C129, C174	Cap, SM, Tant. 22uF/25V	42480009	ECS-T1ED226R	PAN	5
98	C64	Cap, SM, Elect. 47uF/16V	42185033	ECE-V0JA470SP	PAN	1
99	C153	Cap, SM, Elect. 100uF/16V	42186003	ECE-V1CA101P	PAN	1
100	C213	Cap, SM, Tant. 22uF/16V	42480001	ECS-H1CD226R	PAN	1

Р	CB Assem	nbly, MB/COMM (A6) (5 of 6)	/IM (A6) 80 116 001, Rev J			
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
101	R71	Res, Chip, RC1206, 1%, MF, 442 OHM	41101159			1
102	R103- R106,R143, R144,R198, R199	Res, Chip, RC1206, 1%, MF, 100K	41101385			8
103	R99, R181, R191	Res, Chip, RC1206, 1%, MF, 178K	41101409			3
104	R98, R182	Res, Chip, RC1206, 1%, MF, 464K	41101449			2
105	R110-R113	Res, Chip, RC1206, 1%, MF, 1M	41101481			4
106	R15, R169 (R169 assoc with item 52)	Res, Chip, RC1206, 5%, 0 OHM	41160145			2
107	R30, R37, R162	Res, Chip, RC1206, 5%, 18 OHM	41160038			3
108	R161	Res, Chip, RC1206, 5%, 24 OHM	41160059			1
109	R81, R154, R157	Res, Chip, RC1206, 5%, 36 OHM	41160060			3
110	R190, R152	Res, Chip, RC1206, 5%, 51 OHM	41160043			2
111	R203, R204	Res, Chip, RC1206, 5%, 68 OHM	41160016			2
112	R163	Res, Chip, RC1206, 5%, 75 OHM	41160040			1
113	R20,R22,R4 3,R74,R75, R80,R86, R129, R145-R150, R160,R164, R165,R201, R159,R166, R167	Res, Chip, RC1206, 5%, 100 OHM	41160011			21
114	R153, R155, R202	Res, Chip, RC1206, 5%, 150 OHM	41160009			3
115	R27, R49, R200	Res, Chip, RC1206, 5%, 200 OHM	41160067			3
116	R17, R18, R151, R156	Res, Chip, RC1206, 5%, 510 OHM	41160046			4
117	R7-R9, R12, R21, R88, R95, R100, R102, R158, R168	Res, Chip, RC1206, 5%, 1K	41160003			11
118	R6, R13, R14	Res, Chip, RC1206, 5%, 2.2K	41160008			3
119	R19, R45, R51, R132	Res, Chip, RC1206, 5%, 2.7K	41160004			4
120	R10, R130	Res, Chip, RC1206, 5%, 3.9K	41160022			2
121	R56,R64,R6 6,R68,R70, R83,R89,R1 42	Res, Chip, RC1206, 5%, 5.1K	41160082			8

Р	PCB Assembly, MB/COMM (A6) (6 of 6)			80 116 001, Rev J		
Item No.	Ref. Desig.	Nomenclature	Tel Desig.	Vendor P/N	Resource	Qty
122	R2,R4,R23, R35,R53- R55,R57- R61,R63,R6 5,R67,R69, R72,R79,R8 7,R97,R109, R119,R128, R192,R193	Res, Chip, RC1206, 5%, 10K	41160015			25
123	R42, R77, R184	Res, Chip, RC1206, 5%, 27K	41160024			3
124	R94, R101	Res, Chip, RC1206, 5%, 33K	41160042			2
125	R85, R34, R121, R136, R194	Res, Chip, RC1206, 5%, 47K	41160031			5
126	R41	Res, Chip, RC1206, 5%, 91K	41160103			1
127	R3,R39,R76 ,R78,R92,R 195-R197	Res, Chip, RC1206, 5%, 100K	41160025			8
128	R126	Res, Chip, RC1206, 5%, 240K	41160035			1
129	R1,R5,R40, R52,R73,R9 3,R108	Res, Chip, RC1206, 5%, 1M	41160049			7
130	R82	Res, Chip, RC1206, 5%, 10M	41160033			1
131	R183	Trimpot, SM 1K	41050007	3314G-1-102E	Bourns	1
132	R33, R96, R125	Trimpot, SM 10K	41050010	3314G-1-103E	Bourns	3
133	J1, J2	Connector, SMA, Straight, Female	48040052	142-0701-231	EFJ	2
134	J3	Connector, Right Angle, SMA, Female	48000056	142-0701-501	EFJ	1
135	W25	Cable Assy, MBC Bd./Panel Switch Bd.	75010131			1
136	R90 (Associated with item 56)	Trimpot, Multiturn 100K	41700016	RC24CW104	Bourns	1
137		Wire, Kynar, Insulated, 28 AWG (BLK)	72628001	461-0	Olympic	AR
138		Wire, Kynar, Insulated, 28 AWG (RED)	72628003	461-2	Olympic	AR
139		PCB Assembly, Temp Sensor	80206001			1
140		PCB Assembly, Diode	80207001			1
141	1	Adhesive, Silicone RTV	31010001	732	Dow Corning	AR
142		Adhesive, Wire Tacking (Spot Cement)	31010005	TACPAK444	Loctite	AR
		Schematic Diagram	80116003			

APPENDIX A

T-36C Data Sheet/Test Set Verification and Acceptance Checks

DATE	
Serial #	
Technician	

	4.4 Display Operation and Verification							
Step #	Test Description	Expected Value	Actual Result	Pass / Fail				
2	Verify Green LED	LIT						
4	Verify Current Software							
5	Momentary Backlighting	Illuminated						
6	Backlighting, Constant	Remains Illuminated						
9	Auto Shut Off	15 Minutes						

	4.4.1 Radio Frequency Measurements							
Step#	Test Description	Expecte	d Value	Actual Result		Pass / Fail		
6	Frequency and P out Verification	Freq	P out	Freq	P out			
6a	LOC	108.10/± 100 Hz	+6 / ± 1 dBm	MHz	dBm			
6b	LOC	111.95/± 100 Hz	+6 / ± 1 dBm	MHz	dBm			
6c	VOR	108.00/± 100 Hz	+6 / ± 1 dBm	MHz	dBm			
6d	VOR	117.95/± 100 Hz	+6 / ± 1 dBm	MHz	dBm			
6e	GS	108.95/329.15 ± 100 Hz	+0 / ± 1 dBm	MHz	dBm			
6f	GS	110.30/335.00 ± 100 Hz	+0 / ± 1 dBm	MHz	dBm			
6g	MB	75MHz/± 100 Hz	+13 / ± 1 dBm	MHz	dBm			
6h	COMM	108MHz± 100Hz	+0/ ± 1 dBm	MHz	dBm			
6i	COMM	174MHz± 100Hz	+0/ ± 1 dBm	MHz	dBm			
8	RF Output Slew	000 dBm to -1	00dBm ± 1 dB	PASS	S FAIL			

	4.4.2 VOR Modulation Measurements								
Step #	# Test Description Expected Value Actual Result			Pass / Fail					
	9960Hz DELETE <i>UP</i>	29 – 31%	%						
2a	9960 Modulation	9960 / ± 99 Hz	Hz						
	FM Deviation	480 Hz / ± 30 Hz	Hz						
2b	9960Hz DELETE <i>DOWN</i>	29 – 31%	%						
20	30 Hz Modulation	30 / ± 0.3 Hz	Hz						
2c	Composite Signal (30 & 9960 Hz)	57 – 63%	%						
2d	Composite Signal (30, 9960, & 1020 Hz)	Present	Checked						

	4.4.3 VOR Angle Verification							
Step #	Test Description Expected Value		Actual Result	Pass / Fail				
3a	Angle Verification- 0°	180 ±1°	0					
4a	Angle Verification- 45°	225 ±1°	0					
4b	Angle Verification- 90°	270 ±1°	0					
4c	Angle Verification- 135°	315 ±1°	0					
4d	Angle Verification- 180°	0 ±1°	0					
4e	Angle Verification- 225°	45 ±1°	0					
4f	Angle Verification- 270°	90 ±1°	0					
4g	Angle Verification- 315°	135 ±1°	0					

	4.4.4 LOC Modulation Measurements							
Step #	Test Description Expected Value Actual Result			Pass / Fail				
1a	DELETE switch DOWN to 150/9960	19 – 21%	%					
l a	Modulation Tone	90 / ± 0.9 Hz	Hz					
1b	DELETE switch UP to 90/30	19 – 21%	%					
10	Modulation Tone	150 / ± 1.5 Hz	Hz					
1c	Verify Composite Signal 90 & 150 Hz	35 – 39%	%					
1d	Verify Composite Signal 90, 150, 1020 Hz	Present	PASS FAIL					

	4.4.4 LOC Modulation Measurements								
Step #	Test Description	Measured Value		Actual Result	Pass / Fail				
1e	Del 90	Measurement -	%	Checked					
L2	Del 150	Measurement -	%	Checked					
LZ	Diff in %	15.5% – 19.5%		%					
	Del 90	Measurement -	%	Checked					
L1	Del 150	Measurement -	%	Checked					
	Diff in %	6% - 10%		%					
	Del 90	Measurement -	%	Checked					
OC	Del 150	Measurement -	%	Checked					
	Diff in %	-1% to +1%		%					
	Del 90	Measurement -	%	Checked					
R1	Del 150	Measurement -	%	Checked					
	Diff in %	-6% to -10%		%					
	Del 90	Measurement -	%	Checked					
R2	Del 150	Measurement -	%	Checked					
	Diff in %	-15.5% to -19.5%		%					

	4.4.5 GS Modulation Measurements								
Step #	Test Description Expected Value Actual Result								
1a	DELETE switch DOWN to 150/9960	39 – 41%	%						
la	Modulation Tone	90Hz / ± 0.9Hz	Hz						
1b	DELETE switch UP to 90/30	39 – 41%	%						
10	Modulation Tone	150Hz / ± 1.5Hz	Hz						
1c	Verify Composite Signal 90 & 150 Hz	72 – 78%	%						

4.4.5 GS Modulation Measurements								
Step #	Test Description	Expected Value		Actual Result	Pass / Fail			
1d	Del 90	Measurement -	%	Checked				
U2	Del 150	Measurement -	%	Checked				
UZ	Diff in %	15% – 20%		%				
	Del 90	Measurement -	%	Checked				
U1	Del 150	Measurement -	%	Checked				
	Diff in %	7% - 11%	<u> </u>	%				

	4.4.5 GS Modulation Measurements									
Step #	Test Description	Expected Value		Actual Result			Pass / Fail			
1d	Del 90	Measurement -	%			Checked				
OC	Del 150	Measurement -	%			Checked				
Diff in %		-1% to +1%				%				
	Del 90	Measurement -	%			Checked				
D1	Del 150	Measurement -	%			Checked				
	Diff in %	-7% to -11%)			%				
	Del 90	Measurement -	%			Checked				
D2	Del 150	Measurement -	%			Checked				
	Diff in %	-15% to -20%				%				
10	Verify Composite	Signal 110.15 & 334.55	Pre:	sent	PASS	FAIL				
1e	110.15, 33	4.55, and 75 MHz	Pre:	sent	PASS	FAIL				

	4.4.5 GS Modulation Measurements							
Step #	Test Description	Actual Result	Pass / Fail					
2a	Modulation Tracking / 1000 Hz	Within ± 5						
3a	Deviation Tracking	Within ± 1 kHz						
	Audio Output Level 100 mv	± 50 mv	mv					
4a	Audio Output Level 500 mv	± 50 mv	mv					
	Audio Output Level 900 mv	± 50 mv	mv					

	4.4.6 Receiver							
Step#	Test Description	Expected Value	Actual Result	Pass / Fail				
Verify Display		120.000 MHz / ± 200 Hz	MHz					
Tracking		Tracks ± 0.2 kHz						

	4.4.6 Receiver								
Step#	Test Description	Expected Value	Actual Result	Pass / Fail					
1a	Verify Display	120.000 MHz / ± 200 Hz	MHz						
1b	Tracking	9.5 kHz / ± 0.2 kHz							
	POWER TOO HIGH, Display Verification	+ 16 dBm	dBm						
	POWER IN RANGE, Display Verification	+9 dBm	dBm						
1c	POWER IN RANGE, Display Verification	-7 dBm	dBm						
IC.	LOW POWER, Display Verification	-17 dBm	dBm						
	LOW POWER, Display Verification	-26 dBm	dBm						
	NO POWER, Display Verification	-33 dBm	dBm						

4.4.6 Receiver								
Step#	Test Description	Expected Value		Actual Result		Pass / Fail		
2a	Verify Deviation	8 kHz /	± 1 kHz		kHz			
2b	Tracking	1 – 15 kHz	z / ± 1 kHz	PASS FAI	L			
5	Verify Test Set switches to Measurement Mode	Display indicates 1 W W						
7	Power Measurement, 120 MHz	10 W /	10 W / ± 2 W W		W			
		Attenuator	Value					
		Open	> 5.0					
9	VSWR Measurement, 120 MHz	3 dB	3.2 ± 0.5					
7	VSWIN Measurement, 120 MHz	6 dB	1.6 ± 0.5					
		10 dB	1.1 ± 0.5					
		Open	> 5.0					
10	VSWR Measurement, 150 MHz	3 dB	3.2 ± 0.5					
10	V SWK Weasurement, 130 MHZ	6 dB	1.6 ± 0.5					
		10 dB	1.1 ± 0.5					
11	Audio Verification	To	ne					
12	Verify 230 VAC Operation	Ope	rates					

DATE	
PASS/FAIL	
Technician	

APPENDIX B

T-36C Data Sheet/Test Set Annual Calibration and Alignment

	4.8.1 Power Interlocks and Clocks							
Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)				
1	AC Green LED	Illuminated	Checked	Checked				
2	Power E62 & E66	14 – 19 VDC	VDC	VDC				
4	Charging Voltage	13.5 VDC ± 0.5 VDC	VDC	VDC				
5	DC LED	Illuminated	Checked	Checked				
6	Verify Software							
10	DC Voltage MB/COMM Board							
10a	TP1	$-6/\pm 0.3 VDC$	VDC	VDC				
10b	TP2	+ 17 / ± 0.5 VDC	VDC	VDC				
10c	TP3	$+ 6 / \pm 0.3 \text{ VDC}$	VDC	VDC				
10d	TP4	$+5 / \pm 0.3 \text{ VDC}$	VDC	VDC				
10e	TP5	$+15 / \pm 0.3 \text{ VDC}$	VDC	VDC				
10f	TP6	- 5 / ± 0.3 VDC	VDC	VDC				
10g	TP7	$+5 / \pm 0.3 VDC$	VDC	VDC				
10h	TP8	$+15 / \pm 0.3 VDC$	VDC	VDC				
11	DC Voltage L/G/V Board							
11a	TP3	$+5 / \pm 0.3 \text{ VDC}$	VDC	VDC				
11b	TP15	+15 / ± 0.3 VDC	VDC	VDC				
11c	TP16	- 5 / ± 0.3 VDC	VDC	VDC				

	4.8.2 Transmitter Checks							
Step #	Test Descript.	Specification		Initial Result		Final Adjusted (If applicable)		
3 & 4	Output Signals	Power dBm	Frequency MHz	Power dBm	Frequency MHz	Power dBm	Frequency MHz	
а	LOC	- 7 ± 2dBm	108.10 MHz ± 150 Hz	dBm	MHz	dBm	MHz	
b	LOC	- 7 ± 2dBm	111.95 MHz ± 150 Hz	dBm	MHz	dBm	MHz	
С	VOR	- 7 ± 2dBm	108.00 MHz ± 150 Hz	dBm	MHz	dBm	MHz	
d	VOR	- 7 ± 2dBm	117.95 MHz ± 150 Hz	dBm	MHz	dBm	MHz	
е	GS	- 5 ± 2dBm	108.95/329.15 ± 300 Hz	dBm	MHz	dBm	MHz	

f	GS	- 5 ± 2dBm	110.30/335.00 ± 300 Hz	dBm	MHz	dBm	MHz
g	MB	+3 ± 2dBm	75 MHz ± 150 Hz	dBm	MHz	dBm	MHz
h	COMM	+3 ± 2dBm	108 MHz ± 150 Hz	dBm	MHz	dBm	MHz
i	COMM	+3 ± 2dBm	174 MHz ± 150 Hz	dBm	MHz	dBm	MHz

Step#	Test Description	Spaci	fication	Initial	Docult	Final Adjusto	od (If applicable)	
Step#	Test Description	Specification		IIIIIIai	Initial Result		Final Adjusted (If applicable)	
13	Antenna Output	Mode	P Out, dBm	Mode	P Out, dBm	Mode	P Out, dBm	
13a	COMM	108 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13b	COMM	115 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13c	COMM	125 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13d	COMM	135 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13e	COMM	145 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13f	COMM	155 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13g	COMM	165 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
13h	COMM	174 MHz	0 ± 1 dBm	COMM	dBm	COMM	dBm	
14a	MB, 75 MHz	+13 ±	1 dBm		P Out, dBm		P Out, dBm	
14b	L/V 108.05 MHz	+6 ±	1 dBm		P Out, dBm		P Out, dBm	
14c	L/V, 113.00 MHz	+6 ±	1 dBm		P Out, dBm		P Out, dBm	
14d	L/V, 117.95 MHz	+6 ±	1 dBm	P Out, dBm		P Out, dBn		
14e	GS, 108.95	+0 ±	1 dBm	P Out, dBm		P Out, dBm		
14f	GS, 109.30	+0 ± 1 dBm			P Out, dBm		P Out, dBm	
14g	GS, 110.30	+0 ±	1 dBm		P Out, dBm		P Out, dBm	
14h	ILS, 110.10	+6 ±	1 dBm		P Out, dBm	P Out, dBm		
16a	COMM 108 MHz	- 25 ±	0.5 dBm	P Out, dBm			P Out, dBm	
16b	COMM 115 MHz		0.5 dBm	P Out, dBm				
16c	COMM 125 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16d	COMM 135 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16e	COMM 145 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16f	COMM 155 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16g	COMM 165 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16h	COMM 174 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16i	MB, 75 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16j	L/V 108.05 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
16k	L/V, 113.00 MHz		0.5 dBm		P Out, dBm		P Out, dBm	
161	L/V, 117.95 MHz	- 25 ± 0.5 dBm			P Out, dBm		P Out, dBm	
16m	GS, 108.95	- 30 ± 0.5 dBm			P Out, dBm		P Out, dBm	
16n	GS, 109.30	- 30 ± 0.5 dBm		P Out, dBm		P Out, dBr		
160	GS, 110.30	- 30 ± 0.5 dBm			P Out, dBm	P Out, dBm		
16p	ILS, 110.10	- 25 ±	0.5 dBm		P Out, dBm		P Out, dBm	
					ı			
17	RF Level Output		100 dBm		Checked		Checked	
• •	Slew Function	1 dB	Steps		3337.04		33NOU	

Step#	Test Description	Specification		Initial Result		Final Adjusted (If applicable)	
		_					
	MB Modulation	Freq Hz	Mod level %	% of Distort.	Freq Hz	Mod level %	% of Distort.
10	OM	400 ± 8	95 ±5 (95-100)				
19	MM	1300±26	95 ±5 (95-100)				
	IM	3000± 60	95 ±5 (95-100)				

Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)
21	VOR Modulation			
21a	9960 Hz AM	30% ± 0.5%	%	%
	FM Deviation	480 HZ ±30 Hz	Checked	Checked
21b	30 Hz AM	30 ± 0.5%	%	%
21c	1020 Hz AM	9 – 10%	%	%
21d	Composite	57 – 63%	%	%
21e	Composite with MB/ID	67 – 73%	%	%

		Test Set	0	45	90	135	180	225	270	315
21f	VOR Bearing	Zifor	180	225	270	315	0	45	90	135
		Checked								
21a	21g S1 Switch Positions	On/Off	8	7	6	5	4	3	2	1
21g	31 SWILLIT PUSHIONS	OH/OH								

Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)
22	LOC Modulation			
22a	90 Hz AM	90 Hz ± / 0.9 Hz%	%	%
22b	150 Hz AM	150 Hz / ± 1.5 Hz	%	%
22c	1020 Hz AM	1020 Hz / ± 50 Hz	%	%
22d	90 + 150 Hz AM	35 – 39%	%	%
22e	90+150+1020 Hz	44 – 50%	%	%
22f				
	DEL 90		%	%
L2	DEL 150		%	%
	Diff in %	15.5% - 19.5%	%	%
	DEL 90		%	%
L1	DEL 150		%	%
	Diff in %	6% – 10%	%	%
	DEL 90		%	%
OC	DEL 150		%	%
	Diff in %	-1% to + 1%	%	%
	DEL 90		%	%
R1	DEL 150		%	%
	Diff in %	-6% to -10%	%	%

	DEL 90		%	%
R2	DEL 150		%	%
	Diff in %	-15.5% to -19.5%	%	%

Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)
23	GS Modulation			
23a	90 Hz AM	90 Hz / ± 0.9 Hz	%	%
23b	150 Hz AM	150 Hz / ± 1.5 Hz	%	%
23c	Composite Mod	72 – 78%	%	%
23d				
	DEL 90		%	%
U2	DEL 150		%	%
	Diff in %	15% - 20%	%	%
	DEL 90		%	%
U1	DEL 150		%	%
	Diff in %	7% – 11%	%	%
	DEL 90		%	%
OC	DEL 150		%	%
	Diff in %	-1% to + 1%	%	%
	DEL 90		%	%
D1	DEL 150		%	%
	Diff in %	-7% to -11%	%	%
	DEL 90		%	%
D2	DEL 150		%	%
	Diff in %	-15% to -20%	%	%

Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)	
24	ILS Modulation	Verify Composite Signal 110.15 & 334.55 MHz	Checked	Checked	
		110.15, 334.55, & 75 MHz	Checked	Checked	

Step#	Test Description	Specification	Initial Result	Final Adjusted (If applicable)	
26	Correction Factor	AMTx = 1.0	AMTx =	AMTx =	
27	AM in Tx Mode	Tracks within ± 5%	Checked	Checked	
28	Correction Factor	FMTx = 1	FMTx=	FMTx=	
29	FM in Tx Mode	Tracks within ± 1 kHz	Checked	Checked	
30a		100 mV ± 50 mV	Checked	Checked	
30b	Audio Out	$500 \text{ mV} \pm 50 \text{ mV}$	Checked	Checked	
30c		900 mV \pm 50 mV	Checked	Checked	

			4.8.3 Recei	ver Checks			
Step#	Test Description	Specif	ication	Initial	Result	Final Adjusted	d (If applicable)
отор и	Took Boodingston	у Сроси	ioution.	IIIIIII	rtooun	i mai riajusto.	а (п аррпоавто)
1	Receiver R/T Port	RxDire	ct Table		Checked	Checke	
2	Receiver, ANT Port		p Table		Oncorou		Checked
3	Frequency Measurements		z ± 200 Hz		MHz		MHz
			om 120 MHz				
4	Frequency Tracking		0 Hz		Checked		Checked
	Power at Antenna Port		ay matches				
	POWER TOO HIGH		dBm		dBm		
	POWER IN RANGE		dBm		dBm		
5	POWER IN RANGE	-7 c	IBm		dBm		
	LOW POWER		dBm		dBm		
	LOW POWER		dBm		dBm		
	NO POWER	-33	dBm		dBm		
6	AM Modulation	Does not e	xceed ±3%		Checked	Checke	
7	P19-12	0 ±		Checked		Checked	
8	AMRx Correction Factor	AMR	(= 1.0	AMRx =		AMRx=	
9	AMRx Tracks		100% 5%		Checked	Checked	
13	FMRx Correction Factor	FMRX	x = 1.0	Checked			Checked
14	FM Deviation		kHz	Checked		d Checke	
15	FMRx Tracks		+16 dBm	Checked		Checked	
				l		L	
18	Test Set /XMIT_MEAS Mode	1	W	Checked		Check	
20	120 MHz		± 2 W	W			W
20	150 MHz		± 2 W		W		W
-				•		l	
21	VSWR Measurement, load at ANT Port	120 MHz	150 MHz	120 MHz	150 MHz	120 MHz	150 MHz
а	3 db Load	3.2 ± 0.5	3.2 ± 0.5				
b	6 dB Load	1.6 ± 0.5	1.6 ± 0.5				
С	10 dB Load	1.1 ± 0.5	1.1 ± 0.5	1			
22	VSWR Measurement		R = 1.0	VSWR=		VSWR=	1
		•					
24	Headset Output	Verify	Tones		Checked	d Checke	
25	Verify Auto Shut Off		± 1 Min		Checked		
26	230 VAC Operation		rates		Checked		Checked

Date of Calibration	
Technician	
Signature or Stamp	